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FIGURE 7. 12 Pixels used to determine the valve of a lower-level pixel.

If the value of this expression is greater than 4.5, the pixel X is tentatively declared to be 1.
The table has certain exceptions to this rule to reduce the amount of edge smearing, generally
encountered in a filtering operation. There are also exceptions that preserve periodic patterns
and dither patterns.

As the lower-resolution layers are obtained from the higher-resolution images, we can use
them when encoding the higher-resolution images. The JBIG specification makes use of the
lower-resolution images when encoding the higher-resolution images by using the pixels of
the lower-resolution images as part of the context for encoding the higher-resolution images.
The contexts used for coding the lowest-resolution layer are those shown in Figure 7.10.
The contexts used in coding the higher-resolution layer are shown in Figure 7.13.

Ten pixels are used in each context. If we include the 2 bits required to indicate which
context template is being used, 12 bits will be used to indicate the context. This means that
we can have 4096 different contexts.

Comparison of MH, MR, MMR, and JBIG

In this section we have seen three old facsimile coding algorithms: modified Huffman,
modified READ, and modified modified READ. Before we proceed to the more modern
techniques found in T.88 and T.42, we compare the performance of these algorithms with
the earliest of the modern techniques, namely JBIG. We described the JBIG algorithm as
an application of arithmetic coding in Chapter 4. This algorithm has been standardized in
ITU-T recommendation T.82. As we might expect, the JBIG algorithm performs better than
the MMR algorithm, which performs better than the MR algorithm, which in turn performs
better than the MH algorithm. The level of complexity also follows the same trend, although
we could argue that MMR is actually less complex than MR.

A comparison of the schemes for some facsimile sources is shown in Table 7.4. The
modified READ algorithm was used with K = 4, while the JBIG algorithm was used with
an adaptive three-line template and adaptive arithmetic coder to obtain the results in this
table. As we go from the one-dimensional MH coder to the two-dimensional MMR coder,
we get a factor of two reduction in file size for the sparse text sources. We get even more
reduction when we use an-adaptive coder and an adaptive model, as 1s true for the JBIG
coder. When we come to the dense text, the advantage of the two-dimensional MMR over
the one-dimensional MH is not as significant, as the amount of two-dimensional correlation
becomes substantially less.
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FIGURE 7. 13 Contexts used in the coding of higher-resolution layers.

TABLE 7.4 Comparison of binary image coding schemes. Data from [91].

Source Original Size

Description (pixels) MH (bytes) MR (bytes) MMR (bytes) JBIG (bytes)
Letter 4352 x 3072 20,605 14.290 8.531 6.682
Sparse text 4352 x 3072 26,155 16.676 9.956 7.696
Dense text 4352 x 3072 135.705 105.684 92.100 70,703

The compression schemes specified in T.4 and T.6 break down when we try to use them
to encode halftone images. In halftone images, gray levels are represented using binary pixel
patterns. A gray level closer to black would be represented by a pattern that contains more
black pixels, while a gray level closer to white would be represented by a pattern with fewer
black pixels. Thus, the model that was used to develop the compression schemes specified
in T.4 and T.6 is not valid for halftone images. The JBIG algorithm, with its adaptive

model and coder, suffers from no such drawbacks and performs well for halftone images
also [91].
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7.6.4 JBIG2—-T.88

The JBIG2 standard was approved in February of 2000. Besides facsimile transmission,
the standard is also intended for document storage, archiving, wireless transmission, print
spooling, and coding of images on the Web. The standard provides specifications only
for the decoder, leaving the encoder design open. This means that the encoder design can
be constantly refined, subject only to compatibility with the decoder specifications. This
situation also allows for lossy compression, beacuse the encoder can incorporate lossy
transformations to the data that enhance the level of compression.

The compression algorithm in JBIG provides excellent compression of a generic bi-level
image. The compression algorithm proposed for JBIG2 uses the same arithmetic coding
scheme as JBIG. However, it takes advantage of the fact that a significant number of bi-level
images contain structure that can be used to enhance the compression performance. A large
percentage of bi-level images consist of text on some background. while another significant
percentage of bi-level images are or contain halftone images. The JBIG2 approach allows
the encoder to select the compression technique that would provide the best performance for
the type of data. To do so, the encoder divides the page to be compressed into three types
of regions called svmbol regions. halftone regions, and generic regions. The symbol regions
are those containing text data, the halftone regions are those containing halftone images, and
the generic regions are all the regions that do not fit into either category.

The partitioning information has to be supplied to the decoder. The decoder requires that
all information provided to it be organized in segments that are made up of a segment header,
a data header, and segment data. The page information segment contains information about
the page including the size and resolution. The decoder uses this information to set up the
page buffer. It then decodes the various regions using the appropriate decoding procedure
and places the different regions in the appropriate location.

Generic Decoding Procedures

There are two procedures used for decoding the generic regions: the generic region decod-
ing procedure and the generic refinement region decoding procedure. The generic region
decoding procedure uses either the MMR technique used in the Group 3 and Group 4 fax
standards or a variation of the technique used to encode the lowest-resolution layer in the
JBIG recommendation. We describe the operation of the MMR algorithm in Chapter 6. The
latter procedure is described as follows.

The second generic region decoding procedure is a procedure called rypical prediction.
In a bi-level image, a line of pixels is often identical to the line above. In typical prediction,
if the current line is the same as the line above, a bit flag called LNTP, is set to 0, and the
line is not transmitted. If the line is not the same. the flag is set to 1, and the line is coded
using the contexts currently used for the low-resolution layer in JBIG. The value of LNTP,
is encoded by generating another bit, SLNTP,, according to the rule

SLNTP, = \(LNTP, ® LNTP, )

which is treated as a virtual pixel to the left of each row. If the decoder decodes an LNTP
value of 0, it copies the line above. If it decodes an LNTP value of 1, the following bits
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in the segment data are decoded using an arithmetic decoder and the contexts described
previously.

The generic refinement decoding procedure assumes the existence of a reference layer
and decodes the segment data with reference to this layer. The standard leaves open the
specification of the reference layer.

Symbol Region Decoding

The symbol region decoding procedure is a dictionary-based decoding procedure. The symbol
region segment is decoded with the help of a symbol dictionary contained in the symbol
dictionary segment. The data in the symbol region segment contains the location where
a symbol is to be placed, as well as the index to an entry in the symbol dictionary. The
symbol dictionary consists of a set of bitmaps and is decoded using the generic decoding
procedures. Note that because JBIG2 allows for lossy compression, the symbols do not
have to exactly match the symbols in the original document. This feature can significantly
increase the compression performance when the original document contains noise that may
preclude exact matches with the symbols in the dictionary.

The halftone region decoding procedure is also a dictionary-based decoding procedure. The
halftone region segment is decoded with the help of a halftone dictionary contained in the
halftone dictionary segment. The halftone dictionary segment is decoded using the generic
decoding procedures. The data in the halftone region segment consists of the location of the
halftone region and indices to the halftone dictionary. The dictionary is a set of fixed-size
halftone patterns. As in the case of the symbol region, if lossy compression is allowed,
the halftone patterns do not have to exactly match the patterns in the original document.
By allowing for nonexact matches. the dictionary can be kept small, resulting in higher
compression.

7.7 MRC-—-T.44

With the rapid advance of technology for document production, documents have changed
in appearance. Where a document used to be a set of black and white printed pages, now
documents contain multicolored text as well as color images. To deal with this new type
of document, the ITU-T developed the recommendation T.44 for Mixed Raster Content
(MRC). This recommendation takes the approach of separating the document into ele-
ments that can be compressed using available techniques. Thus, it is more an approach of
partitioning a document image than a compression technique. The compression strategies
employed here are borrowed from previous standards such as JPEG (T.81), JBIG (T.82), and
even T.6.

The T.44 recommendation divides a page into slices where the width of the slice is equal
to the width of the entire page. The height of the slice is variable. In the base mode, each
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FIGURE 7. 14 Ruby’s birthday invitation.
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FIGURE 7. 15 The background layer.

slice is represented by three layers: a background layer, a foreground layer, and a mask
layer. These layers are used to effectively represent three basic data types: color images
{which may be continuous tone or color mapped), bi-level data, and multilevel (multicolor)
data. The multilevel image data is put in the background layer, and the mask and foreground
layers are used to represent the bi-level and multilevel nonimage data. To work through the
various definitidns, let us use the document shown in Figure 7.14 as an example. We have
divided the document into two slices. The top slice contains the picture of the cake and two
lines of writing in two “colors.” Notice that the heights of the two slices are not the same and
the complexity of the information contained in the two slices is not the same. The top slice
contains multicolored text and a continuous tone image whereas the bottom slice contains
only bi-level text. Let us take the upper slice first and see how to divide it into the three
layers. We will discuss how to code these layers later. The background layer consists of the
cake and nothing else. The default color for the background layer is white (though this can
be changed). Therefore, we do not need to send the left half of this layer, which contains
only white pixels. ‘
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FIGURE 7. 16 The mask layer.
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FIGURE 7. 17 The foreground layer.

The mask layer (Figure 7.16) consists of a bi-level representation of the textual infor-
mation, while the foreground layer contains the colors used in the text. To reassemble the
slice we begin with the background layer. We then add to it pixels from the foreground
layer using the mask layer as the guide. Wherever the mask layer pixel is black (1) we pick
the corresponding pixel from the foreground layer. Wherever the mask pixel is white (0) we
use the pixel from the background layer. Because of its role in selecting pixels, the mask
layer is also known as the selector layer. During transmission the mask layer is transmitted
first, followed by the background and the foreground layers. During the rendering process
the background layer is rendered first.

When we look at the lower slice we notice that it contains only bi-level information. In
this case we only need the mask layer because the other two layers would be superfluous.
In order to deal with this kind of situation, the standard defines three different kinds of
stripes. Three-layer stripes (3LS) contain all three layers and is useful when there is both
image and textual data in the strip. Two-layer stripes (2LS) only contain two layers, with the
third set to a constant value. This kind of stripe would be useful when encoding a stripe with
multicolored text and no images, or a stripe with images and bi-level text or line drawings.
The third kind of stripe is a one-layer stripe (ILS) which would be used when a stripe
contains only bi-level text or line art, or only continuous tone images.

Once the document has been partitioned it can be compressed. Notice that the types
of data we have after partitioning are continuous tone images, bi-level information, and
multilevel regions. We already have efficient standards for compressing these types of
data. For the mask layer containing bi-level information, the recommendation suggests that
one of several approaches can be used, including modified Huffman or modified READ
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(as described in recomendation T.4), MMR (as described in recommendation T.6) or JBIG
(recommendation T.82). The encoder includes information in the datastream about which
algorithm has been used. For the continuous tone images and the multilevel regions contained
in the foreground and background layers, the recommendation suggests the use of the JPEG
standard (recommendation T.81) or the JBIG standard. The header for each slice contains
information about which algorithm is used for compression.

7.8 Summary

In this section we have examined a number of ways to compress images. All these approaches
exploit the fact that pixels in an image are generally highly correlated with their neighbors.
This correlation can be used to predict the actual value of the current pixel. The prediction
error can then be encoded and transmitted. Where the correlation is especially high, as in
the case of bi-level images, long stretches of pixels can be encoded together using their
similarity with previous rows. Finally, by identifying different components of an image that
have common characteristics, an image can be partitioned and each partition encoded using
the algorithm best suited to it.

Further Reading

1. A detailed survey of lossless image compression techniques can be found in “Lossless
Image Compression” by K.P. Subbalakshmi. This chapter appears in the Lossless
Compression Handbook, Academic Press, 2003.

2. For a detailed description of the LOCO-I and JPEG-LS compression algorithm, see
“The LOCO-I Lossless Image Compression Algorithm: Principles and Standardiza-
tion into JPEG-LS,” Hewlett-Packard Laboratories Technical Report HPL-98-193,
November 1998 [92].

3. The JBIG and JBIG2 standards are described in a very accessible manner in “Lossless
Bilevel Image Compression,” by M.W. Hoffman. This chapter appears in the Lossless
Compression Handbook, Academic Press, 2003.

4. The area of lossless image compression is a very active one, and new schemes are
being published all the time. These articles appear in a number of journals, including
Journal of Electronic Imaging, Optical Engineering, IEEE Transactions on Image
Processing, IEEE Transactions on Communications, Communications of the ACM,
IEEE Transactions on Computers, and Image Communication, among others.

7.9 Projects and Problems

1. Encode the binary image shown in Figure 7.18 using the modified Huffman scheme.
2. Encode the binary image shown in Figure 7.18 using the modified READ scheme.

3. Encode the binary image shown in Figure 7.18 using the modified modified READ
scheme.
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FIGURE 7. 18 An 8 x 16 binary image.
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Suppose we want to transmit a 512 x 512, 8-bits-per-pixel image over a 9600 bits per
second line.

{a) If we were to transmit this image using raster scan order, after 15 seconds how
many rows of the image will the user have received? To what fraction of the
image does this correspond?

{b) If we were to transmit the image using the method of Example 7.5.1, how long
would it take the user to receive the first approximation? How long would it take
to receive the first two approximations?

An implementation of the progressive transmission example (Example 7.5.1) is included
in the programs accompanying this book. The program s called prog_tranl. c. Using
this program as a template, experiment with different ways of generating approximations
(you could use various types of weighted averages) and comment on the qualitative
differences (or lack thereof) with using various schemes. Try different block sizes and
comment on the practical effects in terms of quality and rate.

The program jpegll_enc.c generates the residual image for the different JPEG
prediction modes, while the program jpegll_dec. c reconstructs the original image
from the residual image. The output of the encoder program can be used as the input
to the public domain arithmetic coding program mentioned in Chapter 4 and the
Huffman coding programs mentioned in Chapter 3. Study the performance of different
combinations of prediction mode and entropy coder using three images of your choice.
Account for any differences you see.

Extend jpegll_enc.c and jpegll_dec.c with an additional prediction mode—
be creative! Compare the performance of your predictor with the JPEG predictors.

Implement the portions of the CALIC algorithm described in this chapter. Encode the
Sena image using your implementation.



Mathematical Preliminaries for
Lossy Coding

8.1 Overview

efore we discussed lossless compression, we presented some of the mathemat-
ical background necessary for understanding and appreciating the compression
schemes that followed. We will try to do the same here for lossy compres-
sion schemes. In lossless compression schemes, rate is the general concern.
With lossy compression schemes, the loss of information associated with such
schemes is also a concern. We will look at different ways of assessing the impact of the
loss of information. We will also briefly revisit the subject of information theory, mainly
to get an understanding of the part of the theory that deals with the trade-offs involved
in reducing the rate, or number of bits per sample, at the expense of the introduction of
distortion in the decoded information. This aspect of information theory is also known as
rate distortion theory. We will also look at some of the models used in the development of
lossy compression schemes.

8.2 Introduction

This chapter will provide some mathematical background that is necessary for discussing
lossy compression techniques. Most of the material covered in this chapter is common to
many of the compression techniques described in the later chapters. Material that is specific
to a particular technique is described in the chapter in which the technique is presented. Some
of the material presented in this chapter is not essential for understanding the techniques
described in this book. However, to follow some of the literature in this area, familiarity
with these topics is necessary. We have marked these sections with a . If you are primarily
interested in the techniques. you may wish to skip these sections, at least on first reading.
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On the other hand, if you wish to delve more deeply into these topics, we have included
a list of resources at the end of this chapter that provide a more mathematically rigorous
treatment of this material.

When we were looking at lossless compression, one thing we never had to worry about
was how the reconstructed sequence would differ from the original sequence. By definition,
the reconstruction of a losslessly constructed sequence is identical to the original sequence.
However, there is only a limited amount of compression that can be obtained with lossless
compression. There is a floor (a hard one) defined by the entropy of the source, below which
we cannot drive the size of the compressed sequence. As long as we wish to preserve all of
the information in the source, the entropy, like the speed of light, is a fundamental limit.

The limited amount of compression available from using lossless compression schemes
may be acceptable in several circumstances. The storage or transmission resources available
to us may be sufficient to handle our data requirements after lossless compression. Or the
possible consequences of a loss of information may be much more expensive than the cost
of additional storage and/or transmission resources. This would be the case with the storage
and archiving of bank records; an error in the records could turn out to be much more
expensive than the cost of buying additional storage media.

If neither of these conditions hold—that is, resources are limited and we do not require
absolute integrity—we can improve the amount of compression by accepting a certain degree
of loss during the compression process. Performance measures are necessary to determine
the efficiency of our lossy compression schemes. For the lossless compression schemes we
essentially used only the rate as the performance measure. That would not be feasible for
lossy compression. If rate were the only criterion for lossy compression schemes, where loss
of information is permitted, the best lossy compression scheme would be simply to throw
away all. the data! Therefore, we need some additional performance measure, such as some
measure of the difference between the original and reconstructed data, which we will refer
to as the distortion in the reconstructed data. In the next section. we will look at some of the
more well-known measures of difference and discuss their advantages and shortcomings.

In the best of all possible worlds we would like to incur the minimum amount of
distortion while compressing to the lowest rate possible. Obviously, there is a trade-off
between minimizing the rate and keeping the distortion small. The extreme cases are when
we transmit no information, in which case the rate is zero, or keep all the information, in
which case the distortion is zero. The rate for a discrete source is simply the entropy. The
study of the situations between these two extremes is called rate distortion theory. In this
chapter we will take a brief look at some important concepts related to this theory.

Finally, we need to expand the dictionary of models available for our use, for several
reasons. First, because we are now able to introduce distortion, we need to determine how
to add distortion intelligently. For this, we often need to look at the sources somewhat
differently than we have done previously. Another reason is that we will be looking at
compression schemes for sources that are analog in nature, even though we have treated
them as discrete sources in the past. We need models that more precisely describe the true
nature of these sources. We will describe several different models that are widely used in
the development of lossy compression algorithms.

We will use the block diagram and notation used in Figure 8.1 throughout our dis-
cussions. The output of the source is modeled as a random variable X. The source coder
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FIGURE 8. 1 Block diagram of a generic compression scheme.

takes the source output and produces the compressed representation X,. The channel block
represents all transformations the compressed representation undergoes before the source is
reconstructed. Usually, we will take the channel to be the identity mapping, which means
X, = 5(,.. The source decoder takes the compressed representation and produces a recon-
struction of the source output for the user.

8.3 Distortion Criteria

How do we measure the closeness or fidelity of a reconstructed source sequence to the
original? The answer frequently depends on what is being compressed and who is doing
the answering. Suppose we were to compress and then reconstruct an image. If the image
is a work of art and the resulting reconstruction is to be part of a book on art, the best
way to find out how much distortion was introduced and in what manner is to ask a person
familiar with the work to look at the image and provide an opinion. If the image is that of
a house and is to be used in an advertisement, the best way to evaluate the quality of the
reconstruction is probably to ask a real estate agent. However, if the image is from a satellite
and is to be processed by a machine to obtain information about the objects in the image,
the best measure of fidelity is to see how the introduced distortion affects the functioning of
the machine. Similarly, if we were to compress and then reconstruct an audio segment, the
judgment of how close the reconstructed sequence is to the original depends on the type of
material being examined as well as the manner in which the judging is done. An audiophile
is much more likely to perceive distortion in the reconstructed sequence, and distortion is
much more likely to be noticed in a musical piece than in a politician’s speech.

In the best of all worlds we would always use the end user of a particular source
output to assess quality and provide the feedback required for the design. In practice this
is not often possible, especially when the end user is a human, because it is difficult to
incorporate the human response into mathematical design procedures. Also, there is difficulty
in objectively reporting the results. The people asked to assess one person’s design may
be more easygoing than the people who were asked to assess another person’s design.
Even though the reconstructed output using one person’s design is rated “excellent” and the
reconstructed output using the other person’s design is only rated “acceptable,” switching
observers may change the ratings. We could reduce this kind of bias by recruiting a large
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number of observers in the hope that the various biases will cancel each other out. This is
often the option used. especially in the final stages of the design of compression systems.
However, the rather cumbersome nature of this process is limiting. We generally need a
more practical method for looking at how close the reconstructed signal is to the original.

A natural thing to do when looking at the fidelity of a reconstructed sequence is to
look at the differences between the original and reconstructed values—in other words, the
distortion introduced in the compression process. Two popular measures of distortion or
difference between the original and reconstructed sequences are the squared error measure
and the absolute difference measure. These are called difference distortion measures. If {x,}
is the source output and {v,} is the reconstructed sequence, then the squared error measure
is given by

d(x,v) = (x—y)* (8.1)
and the absolute difference measure is given by
d(x.y)=|x—y|. (8.2)

In general, it is difficult to examine the difference on a term-by-term basis. Therefore,
a number of average measures are used to summarize the information in the difference
sequence. The most often used average measure is the average of the squared error measure.
This is called the mean squared error (mse) and is often represented by the symbol ¢* or

2.
o

ol = -]:_/ S (-1, (8.3)

n=1

If we are interested in the size of the error relative to the signal, we can find the ratio of
the average squared value of the source output and the mse. This is called the signal-to-noise
ratio (SNR).

SNR = 2t (8.4)

Oa
where o7 is the average squared value of the source output, or signal, and o3 is the mse. The
SNR is often measured on a logarithmic scale and the units of measurement are decibels
(abbreviated to dB).

g
SNR(dB) = 10log,, = (8.5)
Oy
Sometimes we are more interested in the size of the error relative to the peak value of
the signal x,.,, than with the size of the error relative to the average squared value of the
signal. This ratio is called the peak-signal-to-noise-ratio (PSNR) and is given by

'rf)euk
PSNR(dB) = 10log,, -2 (8.6)
o

d
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Another difference distortion measure that is used quite often, although not as often as
the mse, is the average of the absolute difference, or

N
dy= 5 S lo—nl. 8.7)
N n=\
This measure seems especially useful for evaluating image compression algorithms.
In some applications, the distortion is not perceptible as long as it is below some
threshold. In these situations we might be interested in the maximum value of the error
magnitude,

dfx. = max ]x” _-VVI] * (8'8)

We have looked at two approaches to measuring the fidelity of a reconstruction. The
first method involving humans may provide a very accurate measure of perceptible fidelity,
but it is not practical and not useful in mathematical design approaches. The second is
mathematically tractable, but it usually does not provide a very accurate indication of the
perceptible fidelity of the reconstruction. A middle ground is to find a mathematical model for
human perception, transform both the source output and the reconstruction to this perceptual
space, and then measure the difference in the perceptual space. For example, suppose we
could find a transformation  that represented the actions performed by the human visual
system (HVS) on the light intensity impinging on the retina before it is “perceived” by the
cortex. We could then find V(x) and V(v) and examine the difference between them. There
are two problems with this approach. First, the process of human perception is very difficult
to model, and accurate models of perception are yet to be discovered. Second, even if we
could find a mathematical model for perception, the odds are that it would be so complex
that it would be mathematically intractable.

In spite of these disheartening prospects, the study of perception mechanisms is still
important from the perspective of design and analysis of compression systems. Even if we
cannot obtain a transformation that accurately models perception, we can learn something
about the properties of perception that may come in handy in the design of compression
systems. In the following, we will look at some of the properties of the human visual system
and the perception of sound. Our review will be far from thorough, but the intent here is to
present some properties that will be useful in later chapters when we talk about compression
of images, video, speech, and audio.

8.3.1 The Human Visval System

The eye is a globe-shaped object with a lens in the front that focuses objects onto the retina
in the back of the eye. The retina contains two kinds of receptors, called rods and cones.
The rods are more sensitive to light than cones, and in low light most of our vision is due
to the operation of rods. There are three kinds of cones, each of which are most sensitive at
different wavelengths of the visible spectrum. The peak sensitivities of the cones are in the
red, blue, and green regions of the visible spectrum [93]. The cones are mostly concentrated
in a very small area of the retina called the fovea. Although the rods are more numerous
than the cones, the cones provide better resolution because they are more closely packed in
the fovea. The muscles of the eye move the eyeball, positioning the image of the object on
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FIGURE 8. 2 A model of monochromatic vision.

the fovea. This becomes a drawback in low light. One way to improve what you see in low
light is to focus to one side of the object. This way the object is imaged on the rods, which
are more sensitive to light.

The eye is sensitive to light over an enormously large range of intensities; the upper end
of the range is about 10'" times the lower end of the range. However, at a given instant
we cannot perceive the entire range of brightness. Instead, the eye adapts to an average
brightness level. The range of brightness levels that the eye can perceive at any given instant
is much smaller than the total range it is capable of perceiving.

If we illuminate a screen with a certain intensity / and shine a spot on it with different
intensity, the spot becomes visible when the difference in intensity is Al. This is called
the just noticeable difference (jnd). The ratio 5,5 is known as the Weber fraction or Weber
ratio. This ratio is known to be constant at about 0.02 over a wide range of intensities in the
absence of background illumination. However, if the background illumination is changed, the
range over which the Weber ratio remains constant becomes relatively small. The constant
range is centered around the intensity level to which the eye adapts.

If AT' is constant, then we can infer that the sensitivity of the eye to intensity is a
logarithmic function (d(log!) = dI/I). Thus, we can model the eye as a receptor whose
output goes to a logarithmic nonlinearity. We also know that the eye acts as a spatial low-
pass filter [94, 95]. Putting all of this information together, we can develop a model for
monochromatic vision, shown in Figure 8.2.

How does this description of the human visual system relate to coding schemes? Notice
that the mind does not perceive everything the eye sees. We can use this knowledge to
design compression systems such that the distortion introduced by our lossy compression

scheme is not noticeable.

8.3.2 Avditory Perception

The ear is divided into three parts, creatively named the outer ear, the middle ear, and the
inner ear. The outer ear consists of the structure that directs the sound waves, or pressure
waves, to the tympanic membrane, or eardrum. This membrane separates the outer ear from
the middle ear. The middle ear is an air-filled cavity containing three small bones that provide
coupling between the tympanic membrane and the oval window, which leads into the inner
ear. The tympanic membrane and the bones convert the pressure waves in the air to acoustical
vibrations. The inner ear contains, among other things, a snail-shaped passage called the
cochlea that contains the transducers that convert the acoustical vibrations to nerve impulses.
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The human ear can hear sounds from approximately 20 Hz to 20 kHz, a 1000:1 range
of frequencies. The range decreases with age; older people are usually unable to hear the
higher frequencies. As in vision, auditory perception has several nonlinear components. One
is that loudness is a function not only of the sound level, but also of the frequency. Thus, for
example, a pure | kHz tone presented at a 20 dB intensity level will have the same apparent
loudness as a 50 Hz tone presented at a 50 dB intensity level. By plotting the amplitude of
tones at different frequencies that sound equally loud, we get a series of curves called the
Fletcher-Munson curves [96].

Another very interesting audio phenomenon is that of masking, where one sound blocks
out or masks the perception of another sound. The fact that one sound can drown out another
seems reasonable. What is not so intuitive about masking is that if we were to try to mask a
pure tone with noise, only the noise in a small frequency range around the tone being masked
contributes to the masking. This range of frequencies is called the critical band. For most
frequencies, when the noise just masks the tone, the ratio of the power of the tone divided by
the power of the noise in the critical band is a constant [97]. The width of the critical band
varies with frequency. This fact has led to the modeling of auditory perception as a bank
of band-pass filters. There are a number of other, more complicated masking phenomena
that also lend support to this theory (see [97, 98] for more information). The limitations of
auditory perception play a major role in the design of audio compression algorithms. We
will delve further into these limitations when we discuss audio compression in Chapter 16.

8.4 Information Theory Revisited x

In order to study the trade-offs between rate and the distortion of lossy compression schemes,
we would like to have rate defined explicitly as a function of the distortion for a given
distortion measure. Unfortunately, this is generally not possible, and we have to go about it
in a more roundabout way. Before we head down this path, we need a few more concepts
from information theory.

In Chapter 2, when we talked about information, we were referring to letters from a
single alphabet. In the case of lossy compression, we have to deal with two alphabets, the
source alphabet and the reconstruction alphabet. These two alphabets are generally different
from each other.

Example 8.4.1:

A simple lossy compression approach is to drop a certain number of the least significant
bits from the source output. We might use such a scheme between a source that generates
monochrome images at 8 bits per pixel and a user whose display facility can display only 64
different shades of gray. We could drop the two least significant bits from each pixel before
transmitting the image to the user. There are other methods we can use in this situation that
are much more effective, but this is certainly simple.

Suppose our source output consists of 4-bit words {0, 1,2, ..., 15}. The source encoder
encodes each value by shifting out the least significant bit. The output alphabet for the source
coderis {0, 1,2, ..., 7}. Atthe receiver we cannot recover the original value exactly. However,
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we can get an approximation by shifting in a O as the least significant bit, or in other words, multi-
plying the source encoder output by two. Thus, the reconstruction alphabet is {0, 2. 4. ..., 14},
and the source and reconstruction do not take values from the same alphabet. ¢

As the source and reconstruction alphabets can be distinct, we need to be able to talk
about the information relationships between two random variables that take on values from
two different alphabets.

8.4.1 Conditional Entropy

Let X be a random variable that takes values from the source alphabet X' = {xy, x,, ..., xy_}.
Let Y be a random variable that takes on values from the reconstruction alphabet ¥ =
{¥o» ¥i»---+ ¥y} From Chapter 2 we know that the entropy of the source and the recon-
struction are given by

N-1

H(X) = — }: P(x;)log, P(x;)

i=0
and
M-
H(Y) = - Z P(,"j)l()g: P(y;).

=0

A measure of the relationship between two random variables is the conditional entropy
(the average value of the conditional self-information). Recall that the self-information for
an event A was defined as

i(A) =log = —log P(A).

1
P(A)
In a similar manner, the conditional self-information of an event A, given that another event
B has occurred, can be defined as

i(A|B) = lo

g F(AIB) = —log P(A|B).
Suppose B is the event “Frazer has not drunk anything in two days,” and A is the event
“Frazer is thirsty.” Then P(A|B) should be close to one, which means that the conditional
self-information i(A|B) would be close to zero. This makes sense from an intuitive point
of view as well. If we know that Frazer has not drunk anything in two days. then the
statement that Frazer is thirsty would not be at all surprising to us and would contain very
little information.

As in the case of self-information, we are generally interested in the average value of
the conditional self-information. This average value is called the conditional entropy. The
conditional entropies of the source and reconstruction alphabets are given as

N—IM-1

H(X|Y) == 3_ " P(xi|y,)P(y;) log, P(x;|y;) (8.9)

=0 j=0
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and
N-1M-1

HYIX) == 30 ¥ P I P(3,) ogs PGy, [x,). (8.10)

i=0 j=0

The conditional entropy H(X1Y) can be interpreted as the amount of uncertainty remaining
about the random variable X, or the source output. given that we know what value the
reconstruction Y took. The additional knowledge of Y should reduce the uncertainty about
X, and we can show that

H(X]Y) < H(X) (8.11)
(see Problem 5).

Example 8.4.2:

Suppose we have the 4-bits-per-symbol source and compression scheme described in Exam-
ple 8.4.1. Assume that the source is equally likely to select any letter from its alphabet. Let
us calculate the various entropies for this source and compression scheme.

As the source outputs are all equally likely, P(X = i) = # forall i e {0,1,2,...,15},
and therefore

H(X):AZ_I_]OgL:logl6:4bits. (8.12)

We can calculate the probabilities of the reconstruction alphabet:
! 1 ]
V=)p=PX=j)+PX=j+1) =+ =0 (8.13)

Therefore, H(Y) = 3 bits. To calculate the conditional entropy H{X|Y), we need the condi-
tional probabilities {P(x,|v,)}. From our construction of the source encoder, we see that

ifi=jori=j+1,forj=0,2,4,..., i4
0 otherwise.

19—

P(X =Y = j) = (8.14)

Substituting this in the expression for H(X|Y) in Equation (8.9), we get

HXIY) = =Y Y P(X =i|Y = j)P(Y = j)log P(X = i|Y = j)

{

=2 [P(X =Y = )P(Y = j)log P(X = j|Y = j)
j

+P(X = j+1|Y = )P(Y = j)log P(X = j+ 1[Y = j)]
S T 1
:_8[§.§log§+ = ] (8.15)

~ 1. (8.16)

b |

log

0o —

Let us compare this answer to what we would have intuitively expected the uncertainty to
be, based on our knowledge of the compression scheme. With the coding scheme described
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here, knowledge of Y means that we know the first 3 bits of the input X. The only thing
about the input that we are uncertain about is the value of the last bit. In other words, if
we know the value of the reconstruction, our uncertainty about the source output is 1 bit.
Therefore, at least in this case, our intuition matches the mathematical definition.

To obtain H(Y|X), we need the conditional probabilities {P(y;|x,)}. From our knowledge
of the compression scheme, we see that

1 ifi=jori=j+1,forj=0,2,4,...,14

PY=jlX=i=
( Jl ) 0 otherwise.

(8.17)

If we substitute these values into Equation (8.10), we get H(Y|X) = 0 bits (note that
0log 0 = 0). This also makes sense. For the compression scheme described here, if we know
the source output, we know 4 bits, the first 3 of which are the reconstruction. Therefore,
in this example, knowledge of the source output at a specific time completely specifies the
corresponding reconstruction. ¢

8.4.2 Average Mvutual Information

We make use of one more quantity that relates the uncertainty or entropy of two random
variables. This quantity is called the mutual information and is defined as

P(xklyj):l
P(x,) .

We will use the average value of this quantity, appropriately called the average mutual
information, which is given by

i(xy)) =log[ (8.18)

~iM- P(x.|y:
I(X:Y) = }:0 jZP(x,, J)log[ if('l;‘)f)} (8.19)
1M P(x|v;
_ ; Zo P(xly) P(y,) logl: ;('l;‘;)] (8.20)

We can write the average mutual information in terms of the entropy and the conditional
entropy by expanding the argument of the logarithm in Equation (8.20).

v e P(xi‘yj)
CED> g P(x,-,yj)log[ e ] (8.21)
N-1M-1 N-1M-1
= 2 2 Plxy)logP(xly) = 3° 3~ P(x,y)logP(x)  (8.22)
i=0 j=0 i=0 j=0
= H(X)— H(X|Y) (8.23)

where the second term in Equation (8.22) is H(X), and the first term is —H(X|Y). Thus. the
average mutual information is the entropy of the source minus the uncertainty that remains
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about the source output after the reconstructed value has been received. The average mutual
information can also be written as

I(X; Y) = H(Y) — H(Y|X) = I(Y; X). (8.24)

Example 8.4.3:

For the source coder of Example 8.4.2, H(X) = 4 bits, and H(X|Y) = 1 bit. Therefore, using
Equation (8.23), the average mutual information /(X; Y) is 3 bits. If we wish to use Equation
(8.24) to compute /(X; Y), we would need H(Y) and H(Y|X), which from Example 8.4.2
are 3 and 0, respectively. Thus, the value of I(X; Y) still works out to be 3 bits. ¢

8.4.3 Differential Entropy

Up to this point we have assumed that the source picks its outputs from a discrete alphabet.
When we study lossy compression techniques, we will see that for many sources of interest
to us this assumption is not true. In this section, we will extend some of the information
theoretic concepts defined for discrete random variables to the case of random variables with
continuous distributions.

Unfortunately, we run into trouble from the very beginning. Recall that the first quantity
we defined was self-information, which was given by log ﬁ where P(x;) is the probability
that the random variable will take on the value x;. For a random variable with a continuous
distribution, this probability is zero. Therefore, if the random variable has a continuous
distribution, the “self-information” associated with any value is infinity.

If we do not have the concept of self-information, how do we go about defining entropy,
which is the average value of the self-information? We know that many continuous functions
can be written as limiting cases of their discretized version. We will try to take this route
in order to define the entropy of a continuous random variable X with probability deusity
function (pdf) fy(x).

While the random variable X cannot generally take on a particular value with nonzero
probability, it can take on a value in an inferval with nonzero probability. Therefore, let us
divide the range of the random variable into intervals of size A. Then, by the mean value
theorem, in each interval [(i — 1)A, {A), there exists a number x;, such that

iA
Fe)d= [T fu(xdx. (8.25)
(i—1)A
Let us define a discrete random variable X, with pdf
P(X,;=x;) = fx(x))A. {8.26)

Then we can obtain the entropy of this random variable as

H(X,) = — 3 P(x)log P(x) (8.27)

f=—o00

_‘Z fx(x;)Alog fy(x;)A (8.28)

i=—o00
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= ”‘Z fx(x)Alog fy(x;) — Z fx(x)AlogA (8-29)
= —AZ [f¢(x;)log fy(x)]A —logA. (8.30)

==

Taking the limit as A — 0 of Equation (8.30), the first term goes to — fi Fy(x)log fy(x) dx.
which looks like the analog to our definition of entropy for discrete sources. However, the
second term is —log A, which goes to plus infinity when A goes to zero. It seems there is
not an analog to entropy as defined for discrete sources. However, the first term in the limit
serves some functions similar to that served by entropy in the discrete case and is a useful
function in its own right. We call this term the differential entropy of a continuous source
and denote it by A(X).

Example 8.4.4:

Suppose we have a random variable X that is uniformly distributed in the interval |a, b).
The differential entropy of this random variable is given by

h(X) = — [ifx(x) log £, (x) dx (8.31)
=—fb 1 log : dx (8.32)

a b—a b—a ’ '
= log(b—a). {(8.33)

Notice that when b — a is less than one, the differential entropy will become negative—in
contrast to the entropy, which never takes on negative values. ¢

Later in this chapter, we will find particular use for the differential entropy of the
Gaussian source.

Example 8.4.5:

Suppose we have a random variable X that has a Gaussian pdf.

(r—p)? (8.34)

1
fr(x) = —exp— ~
xl Vv2mo? Pm e

The differential entropy is given by

h(X)

S B o S e A R
meexp S0 loc[ 2Tw:exp 5o :|d1 (8.35)

= —log (x)dx+ [ ) (x;g’f Y togef, (x)dx (8.36)

R
ﬁ[wfx
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oo
log2mo™ + S loge (8.37)

log 2mec™. (8.38)

B = I

Thus, the differential entropy of a Gaussian random variable is directly proportional to its
variance. ¢

The differential entropy for the Gaussian distribution has the added distinction that it is
larger than the differential entropy for any other continuously distributed random variable
with the same variance. That is, for any random variable X, with variance o2

hX) < %logQweaz. (8.39)

The proof of this statement depends on the fact that for any two continuous distributions
fx(X) and g, (X)

__/7*[\ (x)log fy(x)dx < —/‘xf\r(x) log g (x)dx. {8.40)

We will not prove Equation (8.40) here, but you may refer to [99] for a simple proof. To
obtain Equation (8.39). we substitute the expression for the Gaussian distribution for gy (x).
Noting that the left-hand side of Equation (8.40) is simply the differential entropy of the
random variable X. we have

h(X) <

A
|
i~
g TR
;ﬁ
—_—
-
S
=)
oo
(¢}
t¥
ge)
|
9
8
Q.

loge
202

log (270%) + 5 [ f()(x— u)'dx

i

log (2wea?). (8.41)

We seem to be striking out with continuous random variables. There is no analog for
self-information and really none for entropy either. However, the situation improves when
we look for an analog for the average mutual information. Let us define the random variable
Y, in a manner similar to the random variable X, as the discretized version of a continuous
valued random variable Y. Then we can show (see Problem 4)

HX YD) == 3 Y [farly) fr) log frr(xly,)] AS —logA.  (8.42)

R
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Therefore, the average mutual information for the discretized random variables is given by

(X, Y,) = H(X;) - H(X,|Y,) (8'43)

- Z fx(xp)Alog fyx(x;) (8-44)

i=—00

- Z [Z fXY(xib)j)f)/‘(yj)lngX|Y(xi|.Vj)A]A' (8-45)

i=—xcbj=—0c

Notice that the two log As in the expression for H(X,) and H(X,|Y,) cancel each other out,
and as long as h(X) and h(X|Y) are not equal to infinity, when we take the limit as A — 0
of I(X,; Y,;) we get

I(X; Y) = h(X) — h(X|Y). (8.46)

The average mutual information in the continuous case can be obtained as a limiting case of
the average mutual information for the discrete case and has the same physical significance.

We have gone through a lot of mathematics in this section. But the information will be
used immediately to define the rate distortion function for a random source.

8.5 Rate Distortion Theory x

Rate distortion theory is concerned with the trade-offs between distortion and rate in lossy
compression schemes. Rate is defined as the average number of bits used to represent
each sample value. One way of representing the trade-offs is via a rate distortion function
R(D). The rate distortion function R(D) specifies the lowest rate at which the output of a
source can be encoded while keeping the distortion less than or equal to D. On our way to
mathematically defining the rate distortion function, let us look at the rate and distortion for
some different lossy compression schemes.

In Example 8.4.2, knowledge of the value of the input at time k completely specifies the
reconstructed value at time k. In this situation,

1 for some j = j

) = 47
P(yj,x,) 0 otherwise. (8.47)
Therefore,
N-1M-1
D = Z Z P(y;|x) P(x)d(x;. y;) (8.48)
i=0 j=0
N-1
= 3 P(x)d(x.y,) (8.49)

i=0

where we used the fact that P(x;, y,) = P(y,|x;)P(x;) in Equation (8.48). The rate for this
source coder is the output entropy H(Y) of the source decoder. If this were always the
case, the task of obtaining a rate distortion function would be relatively simple. Given a



8.5 Rate Distortion Theory % 209

distortion constraint D*, we could look at all encoders with distortion less than D* and
pick the one with the lowest output entropy. This entropy would be the rate corresponding
to the distortion D*. However, the requirement that knowledge of the input at time k
completely specifies the reconstruction at time k is very restrictive, and there are many
efficient compression techniques that would have to be excluded under this requirement.
Consider the following example.

With a data sequence that consists of height and weight measurements, obviously height and
weight are quite heavily correlated. In fact, after studying a long sequence of data, we find
that if we plot the height along the x axis and the weight along the y axis, the data points
cluster along the line y = 2.5x. In order to take advantage of this correlation, we devise the
following compression scheme. For a given pair of height and weight measurements, we
find the orthogonal projection on the y = 2.5x line as shown in Figure 8.3. The point on
this line can be represented as the distance to the nearest integer from the origin. Thus, we
encode a pair of values into a single value. At the time of reconstruction, we simply map
this value back into a pair of height and weight measurements.

For instance, suppose somebody is 72 inches tall and weighs 200 pounds (point A in
Figure 8.3). This corresponds to a point at a distance of 212 along the y = 2.5x line. The
reconstructed values of the height and weight corresponding to this value are 79 and 197.
Notice that the reconstructed values differ from the original values. Suppose we now have

200 -------- N
190 -------- oB/
|
”v
) |
b 1
S .
@ |
= :
]
i
(
|
I
|
I
I
|
I
%
72
Height (in)

FIGURE 8.3 Compression scheme for encoding height-weight pairs.
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another individual who is also 72 inches tall but weighs 190 pounds (point B in Figure 8.3).
The source coder output for this pair would be 203, and the reconstructed values for height
and weight are 75 and 188, respectively. Notice that while the height value in both cases was
the same, the reconstructed value is different. The reason for this is that the reconstructed
value for the height depends on the weight. Thus. for this particular source coder. we
do not have a conditional probability density function {P(y;|x;)} of the form shown in
Equation (8.47). ¢

Let us examine the distortion for this scheme a little more closely. As the conditional
probability for this scheme is not of the form of Equation (8.47), we can no longer write the
distortion in the form of Equation (8.49). Recall that the general form of the distortion is

N-1M-1

D=3 Y dx, y)P(x)P(y;]x;). (8.50)

i=0 =0

Each term in the summation consists of three factors: the distortion measure d(x;, y,), the
source density P(x;), and the conditional probability P(y;|x;). The distortion measure is a
measure of closeness of the original and reconstructed versions of the signal and is generally
determined by the particular application. The source probabilities are solely determined by
the source. The third factor, the set of conditional probabilities, can be seen as a description
of the compression scheme.

Therefore. for a given source with some pdf {P(x;)} and a specified distortion measure
d(-.-). the distortion is a function only of the conditional probabilities {P(y;|x;)}: that is.

D = D({P(y;[x)}). (8.51)

Therefore, we can write the constraint that the distortion D be less than some value D* as a
requirement that the conditional probabilities for the compression scheme belong to a set of
conditional probabilities I' that have the property that

I'= {{P(y,]x;} such that D({P(y;|x))}) < D"}. {8.52)

Once we know the set of compression schemes to which we have to confine ourselves,
we can start to look at the rate of these schemes. In Example 8.4.2, the rate was the entropy
of Y. However, that was a result of the fact that the conditional probability describing that
particular source coder took on only the values 0 and 1. Consider the following trivial
situation.

Example 8.5.2:

Suppose we have the same source as in Example 8.4.2 and the same reconstruction alphabet.
Suppose the distortion measure is

d(x,y;)=(x,— ,V,'V)z
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and D* = 225. One compression scheme that satisfies the distortion constraint randomly
maps the input to any one of the outputs; that is,

1
P(yjlx,-)zg fori=0,1,...,15and j=0,2....,14.

We can see that this conditional probability assignment satisfies the distortion constraint. As
each of the eight reconstruction values is equally likely, H(Y) is 3 bits. However, we are not
transmitting any information. We could get exactly the same results by transmitting 0 bits
and randomly picking Y at the receiver. ¢

Therefore, the entropy of the reconstruction H(Y) cannot be a measure of the rate. In
his 1959 paper on source coding [100], Shannon showed that the minimum rate for a given
distortion is given by

R(D) = IP(.\r-R:.I)]IeFI(X’ ). {8.53)

To prove this is beyond the scope of this book. (Further information can be found in [3]
and [4].) However, we can at least convince ourselves that defining the rate as an average
mutual information gives sensible answers when used for the examples shown here. Consider
Example 8.4.2. The average mutual information in this case is 3 bits, which is what we said
the rate was. In fact, notice that whenever the conditional probabilities are constrained to be
of the form of Equation (8.47),

H(Y|X) =0,
then

I(X;Y) = H(Y),

which had been our measure of rate.
In Example 8.5.2, the average mutual information is O bits, which accords with our
intuitive feeling of what the rate should be. Again, whenever

H(Y|X) = H(Y),
that is, knowledge of the source gives us no knowledge of the reconstruction,
I(X;Y)=0,

which seems entirely reasonable. We should not have to transmit any bits when we are not
sending any information.

At least for the examples here, it seems that the average mutual information does
represent the rate. However, earlier we had said that the average mutual information between
the source output and the reconstruction is a measure of the information conveyed by the
reconstruction about the source output. Why are we then looking for compression schemes
that minimize this value? To understand this, we have to remember that the process of finding
the performance of the optimum compression scheme had two parts. In the first part we
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specified the desired distortion. The entire set of conditional probabilities over which the
average mutual information is minimized satisfies the distortion constraint. Therefore, we
can leave the question of distortion, or fidelity, aside and concentrate on minimizing the rate.

Finally, how do we find the rate distortion function? There are two ways: one is a
computational approach developed by Arimoto [101] and Blahut [102]. While the derivation
of the algorithm is beyond the scope of this book, the algorithm itself is relatively simple.
The other approach is to find a lower bound for the average mutual information and then
show that we can achieve this bound. We use this approach to find the rate distortion
functions for two important sources.

Example 8.5.3: Rate distortion function for the
binary sovurce

Suppose we have a source alphabet {0, 1}, with P(0) = p. The reconstruction alphabet is
also binary. Given the distortion measure

d(x.y)=x®y, (8.54)

where @ is modulo 2 addition, let us find the rate distortion function. Assume for the moment
that p < % For D > p an encoding scheme that would satisfy the distortion criterion would
be not to transmit anything and fix ¥ = 1. So for D> p

R(D) =0. (8.55)

We will find the rate distortion function for the distortion range 0 < D < p.
Find a lower bound for the average mutual information:

I(X;Y) = H(X)— H(X]Y) (8.56)
= H(X)— HX®Y|Y) (8.57)
> HX)-H(X®Y) from Equation (8.11). (8.58)

In the second step we have used the fact that if we know Y, then knowing X we can obtain
X@Y and vice versaas XY DY = X.
Let us look at the terms on the right-hand side of (8.11):

H(X) = —plog, p— (1 —p)log,(1 — p) = H,(p), (8.59)

where H,(p) is called the binary entropy function and is plotted in Figure 8.4. Note that
H,(p) = H,(1-p).

Given that H(X) is completely specified by the source probabilities, our task now is
to find the conditional probabilities {P(x,y;)} such that H(X & Y) is maximized while
the average distortion E[d(x;,y;)] < D. H(X@®Y) is simply the binary entropy function
H,(P(X®Y =1)), where

PX®Y=1)=P(X=0,Y=1)+P(X=1,Y =0). (8.60)
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Hy(p)
A

FIGURE 8. 4 The binary entropy function.

Therefore, to maximize H(X @ Y), we would want P(X@® Y = 1) to be as close as possible
to one-half. However, the selection of P(X @ Y) also has to satisfy the distortion constraint.
The distortion is given by

E[d(x;,y)] = 0xP(X=0,Y=0)+1xP(X=0,Y=1)
+1xP(X=1,Y=0+0xP(X=1,Y=1)
PX=0,Y=1)+PX=1,Y=0)
P(Y = 1|X =0)p+P(Y =0|X = 1)(1 - p). (8.61)

il

But this is simply the probability that X @ Y = . Therefore, the maximum value that

P(X @Y =1) can have is D. Our assumptions were that D < p and p < % which means that

D < {. Therefore, P(X @Y = 1) is closest to 1 while being less than or equal to D when

PX®Y = 1) = D. Therefore,
I(X;Y) > H,(p)— H,(D). (8.62)

We can show that for P(X =0|Y = 1) = P(X = 1|Y = 0) = D, this bound is achieved.
That is. if P(X =0|Y = 1) = P(X = 1|Y =0) = D, then

I(X;Y)=H,(p)— H,(D). (8.63)
Therefore, for D < p and p < %

R(D) = H,(p) — H,(D). (8.64)
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Finally, if p > %, then we simply switch the roles of p and 1 — p. Putting all this together,
the rate distortion function for a binary source is

H,(p)— H,(D) for D <min{p,1— p}

R(D) = .
0 otherwise.

(8.65)
¢

Example 8.5.4: Rate distortion function for the
Gavussian source

Suppose we have a continuous amplitude source that has a zero mean Gaussian pdf with
variance o?. If our distortion measure is given by

d(x,y) = (x =), (8.66)
our distortion constraint is given by
E[(X-D*]<D. (8.67)

Our approach to finding the rate distortion function will be the same as in the previous
example; that is, find a lower bound for I(X; ¥) given a distortion constraint, and then show
that this lower bound can be achieved.

First we find the rate distortion function for D < 2.

I(X;Y) = h(X) - h(X]Y) (8.68)
= h(X)— h(X - Y|Y) (8.69)
> h(X)—h(X -Y) (8.70)

In order to minimize the right-hand side of Equation (8.70), we have to maximize the second
term subject to the constraint given by Equation (8.67). This term is maximized if X — Y is
Gaussian, and the constraint can be satisfied if E [(X — ¥)*] = D. Therefore, h(X —Y) is the
differential entropy of a Gaussian random variable with variance D, and the lower bound
becomes

I(X;7) > %log(27re0'2) - % log{(2meD) (8.71)
I o?
= Elog o (8.72)

This average mutual information can be achieved if Y is zero mean Gaussian with variance
2
o°— D, and

1
X = ——eexXp ——.

For D > g? , if we set Y =0, then

(8.73)

I(X;1) =0 (8.74)
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and
E[(X-Y)?]=0"<D. (8.75)
Therefore, the rate distortion function for the Gaussian source can be written as

1 2 2
;logs forD<o

, (8.76)
0 for D > o°.

¢

R(D) = l

Like the differential entropy for the Gaussian source, the rate distortion function for the
Gaussian source also has the distinction of being larger than the rate distortion function for
any other source with a continuous distribution and the same variance. This is especially
valuable because for many sources it can be very difficult to calculate the rate distortion
function. In these situations, it is helpful to have an upper bound for the rate distortion
function. It would be very nice if we also had a lower bound for the rate distortion function
of a continuous random variable. Shannon described such a bound in his 1948 paper [7],
and it is appropriately called the Shannon lower bound. We will simply state the bound here
without derivation (for more information, see [4]).

The Shannon lower bound for a random variable X and the magnitude error criterion

d(x,y)=|x—| (8.77)
is given by
Ry, 5(D) = h(X) —log(2eD). (8.78)

If we used the squared error criterion, the Shannon lower bound is given by
1
R, 5(D) = h(X) — 3 log(2meD). (8.79)

In this section we have defined the rate distortion function and obtained the rate distortion
function for two important sources. We have also obtained upper and lower bounds on the
rate distortion function for an arbitrary iid source. These functions and bounds are especially
useful when we want to know if it is possible to design compression schemes to provide a
specified rate and distortion given a particular source. They are also useful in determining the
amount of performance improvement that we could obtain by designing a better compression
scheme. In these ways the rate distortion function plays the same role for lossy compression
that entropy plays for lossless compression.

8.6 Models

As in the case of lossless compression, models play an important role in the design of lossy
compression algorithms; there are a variety of approaches available. The set of models we
can draw on for lossy compression is much wider than the set of models we studied for
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lossless compression. We will look at some of these models in this section. What is presented
here is by no means an exhaustive list of models. Our only intent is to describe those models
that will be useful in the following chapters.

8.6.1 Probability Models

An important method for characterizing a particular source is through the use of probability
models. As we shall see later, knowledge of the probability model is important for the design
of a number of compression schemes.

Probability models used for the design and analysis of lossy compression schemes
differ from those used in the design and analysis of lossless compression schemes. When
developing models in the lossless case, we tried for an exact match. The probability of each
symbol was estimated as part of the modeling process. When modeling sources in order
to design or analyze lossy compression schemes, we look more to the general rather than
exact correspondence. The reasons are more pragmatic than theoretical. Certain probability
distribution functions are more analytically tractable than others, and we try to match the
distribution of the source with one of these “nice” distributions.

Uniform, Gaussian, Laplacian, and Gamma distribution are four probability models
commonly used in the design and analysis of lossy compression systems:

B Uniform Distribution: As for lossless compression, this is again our ignorance model.
If we do not know anything about the distribution of the source output, except possibly
the range of values, we can use the uniform distribution to model the source. The
probability density function for a random variable uniformly distributed between
aand b is

1 fora<x<b
fX('x)= b—a

0 otherwise.

(8.80)

M Gaussian Distribution: The Gaussian distribution is one of the most commonly used
probability models for two reasons: it is mathematically tractable and, by virtue of the
central limit theorem, it can be argued that in the limit the distribution of interest goes
to a Gaussian distribution. The probability density function for a random variable with
a Gaussian distribution and mean u and variance ¢ is

exp M (8.81)

27a? 2072

fx(x) =

W Laplacian Distribution: Many sources that we deal with have distributions that are
quite peaked at zero. For example, speech consists mainly of silence. Therefore,
samples of speech will be zero or close to zero with high probability. Image pixels
themselves do not have any attraction to small values. However, there is a high degree
of correlation among pixels. Therefore, a large number of the pixel-to-pixel differences
will have values close to zero. In these situations, a Gaussian distribution is not a very
close match to the data. A closer match is the Laplacian distribution, which is peaked
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at zero. The distribution function for a zero mean random variable with Laplacian
distribution and variance o’ is

1 . —V2 x|
X .
V20?2 P o

B Gamma Distribution: A distribution that is even more peaked, though considerably
less tractable, than the Laplacian distribution is the Gamma distribution. The distribu-
tion function for a Gamma distributed random variable with zero mean and variance
o is given by

fx(x) = (8.82)

V3 —V/3 x|
exp :
/870 |x| 20

The shapes of these four distributions, assuming a mean of zero and a variance of one, are
shown in Figure 8.5.

One way of obtaining the estimate of the distribution of a particular source is to divide
the range of outputs into “bins” or intervals I,. We can then find the number of values n,
that fall into each interval. A plot of f,’; where n; is the total number of source outputs
being considered, should give us some idea of what the input distribution looks like. Be
aware that this is a rather crude method and can at times be misleading. For example, if we
were not careful in our selection of the source output, we might end up modeling some local
peculiarities of the source. If the bins are too large, we might effectively filter out some
important properties of the source. If the bin sizes are too small, we may miss out on some
of the gross behavior of the source.

fx(x)= (8.83)

| L1 | | 1

[0 Uniform —— |
Gaussian - - - -
Laplacian

0.8+ ah Gamma -~~~ B

0.6 —

0.4 — ) - \‘,:\ -

0.2 AR -

0 I i o
-6 -4 =2 0 2 4 6

FIGURE 8. 5 Uniform, Gaussian, Laplacian, and Gamma distributions.
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Once we have decided on some candidate distributions, we can select between them
using a number of sophisticated tests. These tests are beyond the scope of this book but are
described in [103].

Many of the sources that we deal with when we design lossy compression schemes have
a great deal of structure in the form of sample-to-sample dependencies. The probability
models described here capture none of these dependencies. Fortunately, we have a lot of
models that can capture most of this structure. We describe some of these models in the
next section.

8.6.2 Linear System Models

A large class of processes can be modeled in the form of the following difference equation:
N M

X, =y ax, ;+y be, +¢, (8.84)
i=1 j=1

where {x,} are samples of the process we wish to model, and {e,} is a white noise sequence.
We will assume throughout this book that we are dealing with real valued samples. Recall that
a zero-mean wide-sense-stationary noise sequence {€,} is a sequence with autocorrelation
function
2
o fork=0
R (ky=1{ "¢ (8.85)

0  otherwise.

In digital signal-processing terminology, Equation (8.84) represents the output of a linear
discrete time invariant filter with N poles and M zeros. In the statistical literature, this model
is called an autoregressive moving average model of order (N.M), or an ARMA (N,M)
model. The autoregressive label is because of the first summation in Equation (8.84), while
the second summation gives us the moving average portion of the name.

If all the b; were zero in Equation (8.84), only the autoregressive part of the ARMA
model would remain:

N
X, =Y. ax,_+€, (8.86)
i=1
This model is called an Nth-order autoregressive model and is denoted by AR(N). In digital
signal-processing terminology, this is an all pole filter. The AR(N) model is the most popular
of all the linear models, especially in speech compression, where it arises as a natural
consequence of the speech production model. We will look at it a bit more closely.

First notice that for the AR(N) process, knowing all the past history of the process gives

no more information than knowing the last N samples of the process; that is,

P(‘rn"xn—]‘ Xp—2s - - ) = P('xn|xn—l s Xpoas oo Xn—N)’ (887)

which means that the AR(N) process is a Markov model of order N.

The autocorrelation function of a process can tell us a lot about the sample-to-sample
behavior of a sequence. A slowly decaying autocorrelation function indicates a high sample-
to-sample correlation, while a fast decaying autocorrelation denotes low sample-to-sample
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correlation. In the case of no sample-to-sample correlation, such as white noise, the auto-
correlation function is zero for lags greater than zero, as seen in Equation (8.85). The
autocorrelation function for the AR(N) process can be obtained as follows:

R, (k) = E[x,x, ] {8.88)
E iXn—i T €, J (X, 8.89
{@ax &) )] (8.89)

N
— B[S an |+ Ele ] 8.90
i=1

_ {Zf”:,afR,‘_..(k—i) for k > 0 (8.91)

YN, aR (i)+a? fork=0.

Suppose we have an AR(3) process. Let us write out the equations for the autocorrelation
coefficient for lags 1, 2, 3:

Rn’(l) = 4a Rtt(o) + alR,n (1) + aBRxx(z)
R.rx(z) = alR.t.r(])+a2Rt.v(o)+a3R.r.t(l)
Rx.r(3) = aIR.u(z)+a2R\_\(l)+a3Rn(0)'

If we know the values of the autocorrelation function R (k), for k =0, 1,2, 3, we can use
this set of equations to find the AR(3) coefficients {a,, a,, a;}. On the other hand, if we
know the model coefficients and a2, we can use the above equations along with the equation
for R,.(0) to find the first four autocorrelation coefficients. All the other autocorrelation
values can be obtained by using Equation (8.91). ¢

To see how the autocorrelation function is related to the temporal behavior of the
sequence, let us look at the behavior of a simple AR(1) source.

Example 8.6.2:
An AR(1) source is defined by the equation

X, =a,X,_ | +€, (8.92)

The autocorrelation function for this source (see Problem 8) is given by
R, (k) = —d|c?. (8.93)

From this we can see that the autocorrelation will decay more slowly for larger values
of a,. Remember that the value of a, in this case is an indicator of how closely the current
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FIGURE 8. 6

Avtocorrelation function of an AR(1) process with two values of a,.

sample is related to the previous sample. The autocorrelation function is plotted for two
values of a, in Figure 8.6. Notice that for a, close to I, the autocorrelation function decays
extremely slowly. As the value of a, moves farther away from 1. the autocorrelation function
decays much faster.

Sample waveforms for a; = 0.99 and a, = 0.6 are shown in Figures 8.7 and 8.8. Notice
the slower variations in the waveform for the process with a higher value of «,. Because

x"
-5 T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
n
FIGURE 8.7 Sample function of an AR(1) process with a,=0.99.
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I [
0 10 20 30 40 50 60 70 80 90 100

n

FIGURE 8. 8 Sample function of an AR({1) process with a,=0.6.

the waveform in Figure 8.7 varies more slowly than the waveform in Figure 8.8, samples of
this waveform are much more likely to be close in value than the samples of the waveform
of Figure 8.8.

Let’s look at what happens when the AR(1) coefficient is negative. The sample wave-
forms are plotted in Figures 8.9 and 8.10. The sample-to-sample variation in these waveforms

10 -

6 — —
4 - —

B 1 -
"iZAV ! | M

-0 /771 717 17 T T T T 1
0O 10 20 30 40 S0 60 70 80 90 100

n

FIGURE 8. 9 Sample function of an AR(1) process with a,=-0.99.
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FIGURE 8. 10 Sample function of an AR(1) process with a,=-0.6.

FIGURE 8. 11 Avtocorrelation function of an AR(1) process with two negative
valves of a,.

is much higher than in the waveforms shown in Figures 8.7 and 8.8. However, if we were
to look at the variation in magnitude. we can see that the higher value of a, results in
magnitude values that are closer together.

This behavior is also reflected in the autocorrelation function, shown in Figure 8.11, as
we might expect from looking at Equation (8.93). ¢
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In Equation (8.84), instead of setting all the {b,} coefficients to zero, if we set all the
{a;} coefficients to zero, we are left with the moving average part of the ARMA process:

M
X, =) b, +e,. (8.94)

j=1

This process is called an Mth-order moving average process. This is a weighted average of
the current and M past samples. Because of the form of this process, it is most useful when
modeling slowly varying processes.

8.6.3 Physical Models

Physical models are based on the physics of the source output production. The physics are
generally complicated and not amenable to a reasonable mathematical approximation. An
exception to this rule is speech generation.

There has been a significant amount of research conducted in the area of speech production
[104], and volumes have been written about it. We will try to summarize some of the
pertinent aspects in this section.

Speech is produced by forcing air first through an elastic opening, the vocal cords, and
then through cylindrical tubes with nonuniform diameter (the laryngeal, oral, nasal, and
pharynx passages), and finally through cavities with changing boundaries such as the mouth
and the nasal cavity. Everything past the vocal cords is generally referred to as the vocal
tract. The first action generates the sound, which is then modulated into speech as it traverses
through the vocal tract.

We will often be talking about filters in the coming chapters. We will try to describe
filters more precisely at that time. For our purposes at present, a filter is a system that has
an input and an output, and a rule for converting the input to the output, which we will call
the transfer function. If we think of speech as the output of a filter, the sound generated by
the air rushing past the vocal cords can be viewed as the input, while the rule for converting
the input to the output is governed by the shape and physics of the vocal tract.

The output depends on the input and the transfer function. Let’s look at each in turn.
There are several different forms of input that can be generated by different conformations
of the vocal cords and the associated cartilages. If the vocal cords are stretched shut and we
force air through, the vocal cords vibrate, providing a periodic input. If a small aperture is left
open, the input resembles white noise. By opening an aperture at different locations along
the vocal cords, we can produce a white-noise-like input with certain dominant frequencies
that depend on the location of the opening. The vocal tract can be modeled as a series of
tubes of unequal diameter. If we now examine how an acoustic wave travels through this
series of tubes, we find that the mathematical model that best describes this process is an
autoregressive model. We will often encounter the autoregressive model when we discuss
speech compression algorithms.
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8.7 Summary

In this chapter we have looked at a variety of topics that will be useful to us when we
study various lossy compression techniques. including distortion and its measurement, some
new concepts from information theory. average mutual information and its connection to
the rate of a compression scheme, and the rate distortion function. We have also briefly.
looked at some of the propertics of the human visual system and the auditory system—
most importantly, visual and auditory masking. The masking phenomena allow us to incur
distortion in such a way that the distortion is not perceptible to the human observer. We also
presented a model for speech production.

There are a number of excellent books available that delve more deeply in the area of
information theory:

V. Information Theory, by R.B. Ash [15].

2. Information Transmission, by R.M. Fano [16].

3. Information Theory and Reliable Communication, by R.G. Gallagher [11].
4. Entropy and Information Theory. by RM. Gray [17].

5. Elements of Information Theory, by T.M. Cover and J.A. Thomas [3].

6. The Theory of Information and Coding, by R.J. McEliece [6]. |

The subject of rate distortion theory is discussed in very clear terms in Rate Distortion
Theory, by T. Berger [4].

For an introduction to the concepts behind speech perception, see Voice and Speech
Processing, by T. Parsons [105].

8.8 Projects and Problems

1. Although SNR is a widely used measure of distortion, it often does not correlate with
perceptual quality. In order to see this we conduct the following experiment. Using
one of the images provided, generate two “‘reconstructed” images. For one of the
reconstructions add a value of 10 to each pixel. For the other reconstruction, randomly
add either +10 or —10 to each pixel.

{a) What is the SNR for each of the reconstructions? Do the relative values reflect
the difference in the perceptual quality?

(b) Devise a mathematical measure that will better reflect the difference in perceptual
quality for this particular case.

2. Consider the following lossy compression scheme for binary sequences. We divide
the binary sequence into blocks of size M. For each block we count the number
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of Os. If this number is greater than or equal to M/2, we send a 0; otherwise, we
send a 1.

{a) If the sequence is random with P(0) = 0.8, compute the rate and distortion
(use Equation (8.54)) for M =1, 2,4, 8, 16. Compare your results with the rate
distortion function for binary sources.

(b) Repeat assuming that the output of the encoder is encoded at a rate equal to the
entropy of the output.

Write a program to implement the compression scheme described in the previous
problem.

{a) Generate a random binary sequence with P(0) = 0.8, and compare your simula-
tion results with the analytical results.

{b) Generate a binary first-order Markov sequence with P(0|0) = 0.9, and P(1]1) =
0.9. Encode it using your program. Discuss and comment on your results.

Show that
H(X,Y) = - Z Z fxw(xi’.",)fy(}'j)AAlogfxw(x.h',') —logA. (8.95)
J=—xi=—
For two random variables X and Y, show that

H(X|Y) < H(X)

with equality if X is independent of Y.
Hint: E[log(f(x))] < log{E[f(x)]} (Jensen’s inequality).

Given two random variables X and Y, show that I(X; Y) = I(Y,; X).

For a binary source with P(0) = p, P(X =0]Y = 1) = P(X = 1]Y =0) = D, and
distortion measure

d(x;,y;)=x,®y,

i
show that

1(X;Y) = Hy,(p) — H,(D). (8.96)
Find the autocorrelation function in terms of the model coefficients and a? for
{a)} an AR(1) process,
{b) an MA(1) process, and
{e) an AR(2) process.






Scalar Quantization

9.1 Overview

=11 this chapter we begin our study of quantization. one of the simplest and most
| general ideas in lossy compression. We will look at scalar quantization in this
| chapter and continue with vector quantization in the next chapter. First. the
‘gcnera] guantization problem is stated. then various solutions are examined,
| WM [srting with the simpler solutions. which require the most assumptions, and
proceeding to more complex solutions that require fewer assumptions. We describe uniform
quantization with fixed-length codewords. first assuming a uniform source, then a source
with a known probability density function (pdf) that is not necessarily uniform. and finally
a source with unknown or changing statistics. We then look at pdf-optimized nonuniform
guantization, followed by companded quantization. Finally, we return to the more general
statement of the quantizer design problem and study entropy-coded quantization.

9.2 Introduction

In many lossy compression applications we are required to represent each source output
using one of a small number of codewords. The number of possible distinct source output
values is generally much larger than the number of codewords available to represent them.
The process of representing a large—possibly infinite-—set of values with a much smaller
set is called quantization.

Consider a source that generates numbers between —10.0 and 10.0. A simple quantization
scheme would be to represent each output of the source with the integer value closest to it.
(If the source output is equally close to two integers, we will randomly pick one of them.)
For example, if the source output is 2.47, we would represent it as 2, and if the source output
is 3.1415926. we would represent it as 3.
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This approach reduces the size of the alphabet required to represent the source output: the
infinite number of values between —10.0 and 10.0 are represented with a set that contains
only 21 values ({—10,....0,...,10}). At the same time we have also forever lost the
original value of the source output. If we are told that the reconstruction value is 3, we
cannot tell whether the source output was 2.95, 3.16, 3.057932, or any other of an infinite
set of values. In other words, we have lost some information. This loss of information is the
reason for the use of the word “lossy” in many lossy compression schemes.

The set of inputs and outputs of a quantizer can be scalars or vectors. If they are
scalars, we call the quantizers scalar quantizers. If they are vectors. we call the quantizers
vector quantizers. We will study scalar quantizers in this chapter and vector quantizers in
Chapter 10.

9.3 The Quantization Problem

Quantization is a very simple process. However, the design of the quantizer has a significant
impact on the amount of compression obtained and loss incurred in a lossy compression
scheme. Therefore, we will devote a lot of attention to issues related to the design of
quantizers.

In practice, the quantizer consists of two mappings: an encoder mapping and a decoder
mapping. The encoder divides the range of values that the source generates into a number of
intervals. Each interval is represented by a distinct codeword. The encoder represents all the
source outputs that fall into a particular interval by the codeword representing that interval.
As there could be many—possibly infinitely many—distinct sample values that can fall in
any given interval, the encoder mapping is irreversible. Knowing the code only tells us the
interval to which the sample value belongs. It does not tell us which of the many values
in the interval is the actual sample value. When the sample value comes from an analog
source, the encoder is called an analog-to-digital (A/D) converter.

The encoder mapping for a quantizer with eight reconstruction values is shown in
Figure 9.1. For this encoder, all samples with values between —1 and 0 would be assigned
the code O11. All values between 0 and 1.0 would be assigned the codeword 100. and so on.
On the two boundaries, all inputs with values greater than 3 would be assigned the code 111,
and all inputs with values less than —3.0 would be assigned the code 000. Thus. any input

Codes

000 | o001
I T
-3.0 -2.0 -1.0 0 1.0 2.0 30 Input

FIGURE 9. 1 Mapping for a 3-bit encoder.
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Input Codes  Output
000 -35
001 -2.5
010 -1.5
011 -0.5
100 0.5
101 1.5
110 25
111 35

FIGURE 9. 2 Mapping for a 3-bit D/A converter.

that we receive will be assigned a codeword depending on the interval in which it falls. As
we are using 3 bits to represent each value, we refer to this quantizer as a 3-bit quantizer.

For every codeword generated by the encoder, the decoder generates a reconstruction
value. Because a codeword represents an entire interval, and there is no way of knowing
which value in the interval was actually generated by the source, the decoder puts out a
value that, in some sense, best represents all the values in the interval. Later, we will see
how to use information we may have about the distribution of the input in the interval to
obtain a representative value. For now, we simply use the midpoint of the interval as the
representative value generated by the decoder. If the reconstruction is analog, the decoder is
often referred to as a digital-to-analog (D/A) converter. A decoder mapping corresponding
to the 3-bit encoder shown in Figure 9.1 is shown in Figure 9.2.

Example 9.3.1:

Suppose a sinusoid 4 cos(2mr) was sampled every 0.05 second. The sample was digitized
using the A/D mapping shown in Figure 9.1 and reconstructed using the D/A mapping
shown in Figure 9.2. The first few inputs, codewords, and reconstruction values are given
in Table 9.1. Notice the first two samples in Table 9.1. Although the two input values
are distinct, they both fall into the same interval in the quantizer. The encoder, therefore,
represents both inputs with the same codeword, which in turn leads to identical reconstruction
values.

TABLE 9.1 Digitizing a sine wave.

t 4cos(2mr)  A/D Output  D/A Output Error

0.05 3.804 111 35 0.304
0.10 3.236 11 35 -0.264
0.15 2.351 110 25 —~0.149
0.20 1.236 101 1.5 —0.264
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Construction of the intervals (their location. etc.) can be vicwed as part of the design of
the encoder. Selection of reconstruction values is part of the design of the decoder. However,
the fidelity of the reconstruction depends on both the intervals and the reconstruction values.
Therefore, when designing or analyzing encoders and decoders. it is reasonable to view them
as a pair. We call this encoder-decoder pair a quantizer. The quantizer mapping for the 3-bit
encoder-decoder pair shown in Figures 9.1 and 9.2 can be represented by the input-output
map shown in Figure 9.3. The quantizer accepts sample values. and depending on the interval
in which the sample values fall, it provides an output codeword and a representation value.
Using the map of Figure 9.3. we can see that an input to the quantizer of 1.7 will result in
an output of 1.5, and an input of —0.3 will result in an output of —0.5.

From Figures 9.1-9.3 we can see that we need to know how to divide the input range
into intervals. assign binary codes to these intervals. and find representation or output values
for these intervals in order to specify a quantizer. We need to do all of this while satistying
distortion and rate criteria. In this chapter we will define distortion to be the average squared
difference between the quantizer input and output. We call this the mean squared quantization
error (msqe) and denote it by (rj. The rate of the quantizer is the average number of bits

Output
3.5
W.S —
1.5
05 4
-4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0
| | | ] l | | |
) [nput
— 05
--1.5
--2.5
—=-3.5

FIGURE 9.3 Quantizer input-output map.
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required to represent a single quantizer output. We would like to get the lowest distortion
for a given rate. or the lowest rate for a given distortion.

Let us pose the design problem in precise terms. Suppose we have an input modeled by
a random variable X with pdf fy(x). If we wished to quantize this source using a quan-
tizer with M intervals, we would have to specify M + | endpoints for the intervals. and a
representative value for each of the M intervals. The endpoints of the intervals are known
as decision boundaries, while the representative values are called reconstruction levels. We
will often model discrete sources with continuous distributions. For example, the difference
between neighboring pixels is often modeled using a Laplacian distribution even though the
differences can only take on a limited number of discrete values. Discrete processes are
modeled with continuous distributions because it can simplify the design process consider-
ably, and the resulting designs perform well in spite of the incorrect assumption. Several
of the continuous distributions used to model source outputs are unbounded—that is. the
range of values is infinite. In these cases. the first and last endpoints are generally chosen
to be $oc.

Let us denote the decision boundaries by {b,}!,. the reconstruction levels by {v}¥ ..
and the quantization operation by Q(-). Then

Ox)y=y, iff b_,<x<bh,. 9.1
The mean squared quantization error is then given by
0l = [ (x= Q) fyla)d (9.2)
M b
= Zf} (x =) fy(x)dx. (9.3)

i=|

The difterence between the quantizer input x and output v = Q{x), besides being referred
to as the quantization error. is also called the quantizer distortion or quantization noise. But
the word *noise™ is somewhat of a misnomer. Generally. when we talk about noise we mean
a process external to the source process. Because of the manner in which the quantization
error is generated, it is dependent on the source process and. therefore, cannot be regarded as
external to the source process. One reason for the use of the word “noise” in this context is
that from time to time we will find it useful to model the quantization process as an additive
noise process as shown in Figure 9.4,

It we use fixed-length codewords to represent the quantizer output, then the size of the
output alphabet immediately specifies the rate. If the number of quantizer outputs is M, then
the rate 1s given by

R = [log, M]. (9.4)
For example. if M =8, then R = 3. In this case. we can pose the quantizer design problem

as follows:

Given an input pd f f (x) and the number of levels M in the quantizer, find the
decision boundaries {6} and the reconstruction levels {y,} so as to minimize the
mean squared quantization error given by Equation (9.3).
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FIGURE 9. 4 Additive noise model of a quantizer.

TABLE 9.2 Codeword assignment
for an eight-level

quantizer.

Y 1110
¥, 1100
Y3 100
Y4 00

Ys 01

Vo 101
¥q 1101
¥g 1111

However, if we are allowed to use variable-length codes, such as Huffman codes or
arithmetic codes, along with the size of the alphabet, the selection of the decision boundaries
will also affect the rate of the quantizer. Consider the codeword assignment for the output
of an eight-level quantizer shown in Table 9.2.

According to this codeword assignment, if the output vy, occurs, we use 2 bits to encode
it, while if the output y, occurs, we need 4 bits to encode it. Obviously, the rate will depend
on how often we have to encode y, versus how often we have to encode y,. In other words,
the rate will depend on the probability of occurrence of the outputs. If /; is the length of the
codeword corresponding to the output y,, and P(y;) is the probability of occurrence of y;,
then the rate is given by

R=Y1P(y,). (9.5)

However, the probabilities {P(v;)} depend on the decision boundaries {b,}. For example,
the probability of y; occurring is given by

b;
P(v,) = f Fx(X)dx.



9.4 Uniform Quantizer 233

Therefore, the rate R is a function of the decision boundaries and is given by the expression

M b,
R=Y1, f’ fy(x)dx. (9.6)
i=1 =1

J

From this discussion and Equations (9.3) and (9.6), we see that for a given source
input. the partitions we select and the representation for those partitions will determine the
distortion incurred during the quantization process. The partitions we select and the binary
codes for the partitions will determine the rate for the quantizer. Thus, the problem of
finding the optimum partitions, codes, and representation levels are all linked. In light of
this information, we can restate our problem statement:

Given a distortion constraint
2 *
o,<D (9.7)

find the decision boundaries, reconstruction levels, and binary codes that mini-
mize the rate given by Equation (9.6), while satisfying Equation (9.7).

Or, given a rate constraint
R<R* (9.8)

find the decision boundaries, reconstruction levels, and binary codes that mini-
mize the distortion given by Equation (9.3), while satisfying Equation (9.8).

This problem statement of quantizer design, while more general than our initial statement,
is substantially more complex. Fortunately, in practice there are situations in which we can
simplify the problem. We often use fixed-length codewords to encode the quantizer output.
In this case, the rate is simply the number of bits used to encode each output, and we can
use our initial statement of the quantizer design problem. We start our study of quantizer
design by looking at this simpler version of the problem, and later use what we have learned
in this process to attack the more complex version.

9.4 Uniform Quantizer

The simplest type of quantizer is the uniform quantizer. All intervals are the same size in the
uniform quantizer, except possibly for the two outer intervals. In other words, the decision
boundaries are spaced evenly. The reconstruction values are also spaced evenly, with the
same spacing as the decision boundaries; in the inner intervals, they are the midpoints of
the intervals. This constant spacing is usually referred to as the step size and is denoted by
A. The quantizer shown in Figure 9.3 is a uniform quantizer with A = . It does not have
zero as one of its representation levels. Such a quantizer is called a midrise quantizer. An
alternative uniform quantizer could be the one shown in Figure 9.5. This is called a midtread
guantizer. As the midtread quantizer has zero as one of its output levels, it is especially
useful in situations where it is important that the zero value be represented—for example,
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FIGURE 9. 5 A midtread quantizer.

control systems in which it is important to represent a zero value accurately. and audio
coding schemes in which we need to represent silence periods. Notice that the midtread
quantizer has only seven intervals or levels. That means that if we were using a fixed-length
3-bit code, we would have one codeword left over.

Usually, we use a midrise quantizer if the number of levels is even and a midtread
quantizer if the number of levels is odd. For the remainder of this chapter, unless we
specifically mention otherwise. we will assume that we are dealing with midrise quantizers.
We will also generally assume that the input distribution is symmetric around the origin
and the quantizer is also symmetric. (The optimal minimum mean squared error quantizer
for a symmetric distribution need not be symmetric [106].) Given all these assumptions. the
design of a uniform quantizer consists of finding the step size A that minimizes the distortion
for a given input process and number of decision levels.

Uniform Quantization of a Uniformly Distributed Source

We start our study of quantizer design with the simplest of all cases: design of a uniform
quantizer for a uniformly distributed source. Suppose we want to design an M-level uniform
quantizer for an input that is uniformly distributed in the interval [—X,ux> Xinan |- This means
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we need to divide the [—X,,,., X,...] interval into M equally sized intervals. In this case. the
step size A is given by

A — - max . (9‘9)

The distortion in this case becomes

y e [P 2i-1.\" 1
=2 X — A dx. 9.10
O-q Z/; 1A (\ 2 ) 2sz\x ' ( )

If we evaluate this integral (after some suffering). we find that the msge is A*/12.
The same result can be more easily obtained if we examine the behavior of the quanti-
zation error ¢ given by

q=x—-0(x). (9.11)

In Figure 9.6 we plot the quantization error versus the input signal for an eight-level
uniform quantizer. with an input that hes in the interval [—X, .. X,...]. Notice that the
quantization error lies in the interval [—3 3 3]. As the input is uniform, it is not difficult to
establish that the quantization error is also uniform over this interval. Thus, the mean squared
quantization error is the second moment of a random variable uniformly distributed in the

interval [—2. 2]:
- 1 % Bl
ol = K[%q-dq (9.12)
=5 (9.13)

Let us also calculate the signal-to-noise ratio for this case. The signal variance o7 for

a uniform random variable, which takes on values in the interval [—Xinaxs X - 18 %—'
} x=Qfx)
— A2
il s B S
| |
I -
"Xmu\ l } ’ / l ’ ‘ Xm.«\ X
~A/2

FIGURE 9. 6 Quantization error for a uniform midrise quantizer with a uniformly
distributed input.
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The value of the step size A is related to X, and the number of levels M by

2X
A — max .
M

For the case where we use a fixed-length code, with each codeword being made up of n
bits. the number of codewords or the number of reconstruction levels M is 2". Combining
all this, we have

2
SNR(dB) = 10log,, (‘—(}) (9.14)
q
(2Xmax)2 12
QX )P} 12
— max 9
10log,, (—-——12 ————(2_)&;4)2) (2.16)
= 10108:0(M2)
= 20log,o(2")
= 6.02ndB. (9.17)

This equation says that for every additional bit in the quantizer, we get an increase in the
signal-to-noise ratio of 6.02 dB. This is a well-known result and is often used to get an
indication of the maximum gain available if we increase the rate. However, remember that
we obtained this result under some assumptions about the input. If the assumptions are not
true, this result will not hold true either.

Example 9.4.1: Image compression

A probability model for the variations of pixels in an image is almost impossible to obtain
because of the great variety of images available. A common approach is to declare the pixel
values to be uniformly distributed between 0 and 2b — 1, where b is the number of bits per
pixel. For most of the images we deal with, the number of bits per pixel is 8; therefore, the
pixel values would be assumed to vary uniformly between 0 and 255. Let us quantize our
test image Sena using a uniform quantizer.

If we wanted to use only 1 bit per pixel, we would divide the range [0, 255] into two
intervals, [0, 127] and [128. 255]. The first interval would be represented by the value 64,
the midpoint of the first interval; the pixels in the second interval would be represented by
the pixel value 196, the midpoint of the second interval. In other words, the boundary values
are {0, 128,255}, while the reconstruction values are {64, 196}. The quantized image is
shown in Figure 9.7. As expected, almost all the details in the image have disappeared. If we
were to use a 2-bit quantizer, with boundary values {0, 64, 128, 196, 255} and reconstruction
levels {32, 96, 160, 224}, we get considerably more detail. The level of detail increases as
the use of bits increases until at 6 bits per pixel. the reconstructed image is indistinguishable
from the original, at least to a casual observer. The 1-, 2-, and 3-bit images are shown in
Figure 9.7.
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FIGURE 9.7 Top left: original Sena image; top right: 1 bit/pixel image; bottom
left: 2 bits/pixel; bottorm right: 3 bits/pixel.

Looking at the lower-rate images. we notice a couple ot things. First, the lower-rate
images are darker than the original. and the lowest-rate reconstructions are the darkest. The
reason for this is that the quantization process usually results in scaling down of the dynamic
range of the input. For example. in the 1-bit-per-pixel reproduction, the highest pixel value
is 196, as opposed to 255 for the original image. As higher gray values represent lighter
shades. there is a corresponding darkening of the reconstruction. The other thing to notice
in the low-rate reconstruction is that wherever there were smooth changes in gray values
there are now abrupt transitions. This is especially evident in the face and neck area, where
gradual shading has been transformed to blotchy regions of constant values. This is because
a range of values is being mapped to the same value, as was the case for the first two samples
of the sinusoid in Example 9.3.1. For obvious reasons, this effect is called contouring. The
perceptual effect of contouring can be reduced by a procedure called dithering [107]. ¢
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Uniform Quantization of Nonuniform Sovrces

Quite often the sources we deal with do not have a uniform distribution; however, we still
want the simplicity of a uniform quantizer. In these cases, even if the sources are bounded,
simply dividing the range of the input by the number of quantization levels does not produce
a very good design.

Example 9.4.2:

Suppose our input fell within the interval {—1, 1] with probability 0.95. and fell in the
intervals [—100, 1), (1, 100] with probability 0.05. Suppose we wanted to design an eight-
level uniform quantizer. If we followed the procedure of the previous section, the step size
would be 25. This means that inputs in the [—1,0) interval would be represented by the
value —12.5, and inputs in the interval [0. 1) would be represented by the value 12.5. The
maximum quantization error that can be incurred is 12.5. However, at least 95% of the
time, the minimum error that will be incurred is 11.5. Obviously, this is not a very good
design. A much better approach would be to use a smaller step size, which would result in
better representation of the values in the [—1. 1] interval, even if it meant a larger maximum
error. Suppose we pick a step size of 0.3. In this case, the maximum quantization error goes
from 12.5 to 98.95. However, 95% of the time the quantization error will be less than 0.15.
Therefore, the average distortion, or msqe, for this quantizer would be substantially less than
the msqe for the first quantizer. ¢

We can see that when the distribution is no longer uniform, it is not a good idea to
obtain the step size by simply dividing the range of the input by the number of levels. This
approach becomes totally impractical when we model our sources with distributions that are
unbounded, such as the Gaussian distribution. Therefore, we include the pdf of the source
in the design process.

Our objective is to find the step size that. for a given value of M, will minimize the
distortion. The simplest way to do this is to write the distortion as a function of the step size,
and then minimize this function. An expression for the distortion, or msqe. for an M-level
uniform quantizer as a function of the step size can be found by replacing the b;s and y;s in
Equation (9.3) with functions of A. As we are dealing with a symmetric condition, we need
only compute the distortion for positive values of x; the distortion for negative values of x
will be the same.

From Figure 9.8, we see that the decision boundaries are integral multiples of A, and the
representation level for the interval [(k — 1)A, kA) is simply %L A. Therefore, the expression
for msqe becomes )

M)

o =2% /'A (x— 2i”1A)~_/jY(_x)dx

Ji-1A 2

i=1

M-1

+2‘[(;1)A <X_TA)—fX(X)dX‘ (9.18)
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FIGURE 9. 8 A vniform midrise quantizer.

To find the optimal value of A, we simply take a derivative of this equation and set it
equal to zero [108] (see Problem 1).

da” T iA 2i— 1
q _ . = RYRYN
= ;(21 ])-u—lu('\ 3 A) fy(x)dx
> M —1 v
—(M — l)-/;¥—I)A (_\‘—— 5 -\> Sy(x)dy =0. (2.19)

This 1s a rather messy-looking expression. but given the pdf fy(x). it is easy to solve using
any one of a number of numerical techniques (see Problem 2). In Table 9.3, we list step sizes
found by solving (9.19) for nine different alphabet sizes and three different distributions.
Before we discuss the results in Table 9.3, let's take a look at the quantization noise
for the case of nonuniform sources. Nonuniform sources are often modeled by pdfs with
unbounded support. That is, there is a nonzero probability of getting an unbounded input.
In practical situations, we are not going to get inputs that are unbounded, but often it is very
convenient to model the source process with an unbounded distribution. The classic example
of this is measurement error. which is often modeled as having a Gaussian distribution.
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TABLE 9.3 Optimum step size and SNR for uniform quantizers for different
distributions and alphabet sizes [108, 109].

Alphabet Uniform Gaussian Laplacian

Size Step Size SNR Step Size SNR Step Size SNR
2 1.732 6.02 1.596 4.40 1.414 3.00
4 0.866 12.04 0.9957 9.24 1.0873 7.05

6 0.577 15.58 0.7334 12.18 0.8707 9.56

8 0.433 18.06 0.5860 14.27 0.7309 11.39
10 0.346 20.02 0.4908 15.90 0.6334 12.81
12 0.289 21.60 0.4238 17.25 0.5613 13.98
14 0.247 22.94 0.3739 18.37 0.5055 14.98
16 0.217 24.08 0.3352 19.36 0.4609 15.84
32 0.108 30.10 0.1881 24.56 0.2799 20.46

x—Q(x) Overload noise

\\/\

R s e 0 W W W
eNeaa

Granular noise

FIGURE 9.9 Quantization error for a uniform midrise quantizer.

even when the measurement error is known to be bounded. If the input is unbounded, the
quantization error is no longer bounded either. The quantization error as a function of input
is shown in Figure 9.9. We can see that in the inner intervals the error is still bounded by
%; however, the quantization error in the outer intervals is unbounded. These two types of
quantization errors are given different names. The bounded error is called granular error
or granular noise. while the unbounded error is called overload error or overload noise. In
the expression for the msqe in Equation (9.18), the first term represents the granular noise.
while the second term represents the overload noise. The probability that the input will fall
into the overload region is called the overload probability (Figure 9.10).
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FIGURE 9. 10 Overload and granvlar regions for a 3-bit uniform quantizer.

The nonuniform sources we deal with have probability density functions that are generally
peaked at zero and decay as we move away from the origin. Therefore, the overload
probability is generally much smaller than the probability of the input falling in the granular
region. As we see from Equation (9.19), an increase in the size of the step size A will result in
an increase in the value of (4 — 1) A, which in turn will result in a decrease in the overload
probability and the second term in Equation (9.19). However. an increase in the step size A
will also increase the granular néise, which is the first term in Equation (9.19). The design
process for the uniform quantizer is a balancing of these two effects. An important parameter
that describes this trade-off is the loading factor f,, defined as the ratio of the maximum
value the input can take in the granular region to the standard deviation. A common value
of the loading factor is 4. This is also referred to as 40 loading.

Recall that when quantizing an input with a uniform distribution, the SNR and bit rate
are related by Equation (9.17), which says that for each bit increase in the rate there is an
increase of 6.02dB in the SNR. In Table 9.3, along with the step sizes, we have also listed
the SNR obtained when a million input values with the appropriate pdf are quantized using
the indicated quantizer.

From this table. we can see that, although the SNR for the uniform distribution follows
the rule of a 6.02dB increase in the signal-to-noise ratio for each additional bit, this is
not true for the other distributions. Remember that we made some assumptions when we
obtained the 6.02n rule that are only valid for the uniform distribution. Notice that the more
peaked a distribution is (that is, the further away from uniform it is), the more it seems to
vary from the 6.02dB rule.

We also said that the selection of A is a balance between the overload and granular
errors. The Laplacian distribution has more of its probability mass away from the origin in
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its tails than the Gaussian distribution. This means that for the same step size and number of
levels there is a higher probability of being in the overload region if the input has a Laplacian
distribution than if the input has a Gaussian distribution. The uniform distribution is the
extreme case, where the overload probability is zero. For the same number of levels. if we
increase the step size, the size of the overload region (and hence the overload probability) is
reduced at the expense of granular noise. Therefore. for a given number of levels, if we were
picking the step size to balance the effects of the granular and overload noise. distributions
that have heavier tails will tend to have larger step sizes. This effect can be seen in Table 9.3.
For example, for eight levels the step size for the uniform quantizer is 0.433. The step size
for the Gaussian quantizer is larger (0.586). while the step size for the Laplacian quantizer
is larger still (0.7309).

Mismatch Effects

We have seen that for a result to hold. the assumptions we used to obtain the result have
to hold. When we obtain the optimum step size for a particular uniform quantizer using
Equation (9.19), we make some assumptions about the statistics of the source. We assume
a certain distribution and certain parameters of the distribution. What happens when our
assumptions do not hold? Let’s try to answer this question empirically.

We will look at two types of mismatches. The first is when the assumed distribution
type matches the actual distribution type. but the variance of the input is different from the
assumed variance. The second mismatch is when the actual distribution type is different
from the distribution type assumed when obtaining the value of the step size. Throughout
our discussion, we will assume that the mean of the input distribution is zero.

In Figure 9.11, we have plotted the signal-to-noise ratio as a tunction of the ratio of
the actual to assumed variance of a 4-bit Gaussian uniform quantizer, with a Gaussian
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FIGURE 9. 11 Effect of variance mismatch on the performance of a 4-hit uniform
quantizer.
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input. (To see the effect under different conditions, see Problem 5.) Remember that for a
distribution with zero mean, the variance is given by o7 = E[X?], which is also a measure
of the power in the signal X. As we can see from the figure, the signal-to-noise ratio is
maximum when the input signal variance matches the variance assumed when designing the
quantizer. From the plot we also see that there is an asymmetry; the SNR is considerably
worse when the input variance is lower than the assumed variance. This is because the
SNR is a ratio of the input variance and the mean squared quantization error. When the
input variance is smaller than the assumed variance, the mean squared quantization error
actually drops because there is less overload noise. However. because the input variance is
low, the ratio is small. When the input variance is higher than the assumed variance, the
msqe increases substantially, but because the input power is also increasing, the ratio does
not decrease as dramatically. To see this more clearly, we have plotted the mean squared
error versus the signal variance separately in Figure 9.12. We can see from these figures
that the decrease in signal-to-noise ratio does not always correlate directly with an increase
in msqe.

The second kind of mismatch is where the input distribution does not match the distribu-
tion assumed when designing the quantizer. In Table 9.4 we have listed the SNR when inputs
with different distributions are quantized using several different eight-level quantizers. The
quantizers were designed assuming a particular input distribution.

Notice that as we go from left to right in the table, the designed step size becomes
progressively larger than the “correct” step size. This is similar to the situation where the
input variance is smaller than the assumed variance. As we can see when we have a mismatch
that results in a smaller step size relative to the optimum step size, there is a greater drop in
performance than when the quantizer step size is larger than its optimum value.
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FIGURE 9. 12 The msqe as a function of variance mismatch with a 4-bit uniform
quantizer.
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TABLE 9.4 Demonstration of the effect of mismatch using
eight- level quantizers {dB).

Input Uniform Gaussian Laplacian Gamma
Distribution Quantizer Quantizer Quantizer Quantizer
Uniform 18.06 15.56 13.29 12.41
Gaussian 12.40 14.27 13.37 12.73
Laplacian 8.80 10.79 11.39 11.28
Gamma 6.98 8.06 8.64 8.76

9.5 Adaptive Quantization

One way to deal with the mismatch problem is to adapt the quantizer to the statistics of the
input. Several things might change in the input relative to the assumed statistics, including
the mean, the variance, and the pdf. The strategy for handling each of these variations can
be different, though certainly not exclusive. If more than one aspect of the input statistics
changes, it is possible to combine the strategies for handling each case separately. If the
mean of the input is changing with time, the best strategy is to use some form of differential
encoding (discussed in some detail in Chapter 11). For changes in the other statistics, the
common approach is to adapt the quantizer parameters to the input statistics.

There are two main approaches to adapting the quantizer parameters: an off-line or
forward adaptive approach, and an on-line or backward adaptive approach. In forward
adaptive quantization, the source output is divided into blocks of data. Each block is analyzed
before quantization, and the quantizer parameters are set accordingly. The settings of the
quantizer are then transmitted to the receiver as side information. In backward adaptive
quantization, the adaptation is performed based on the quantizer output. As this is available
to both transmitter and receiver, there is no need for side information.

9.5.1 Forward Adaptive Quantization

Let us first look at approaches for adapting to changes in input variance using the forward
adaptive approach. This approach necessitates a delay of at least the amount of time required
to process a block of data. The insertion of side information in the transmitted data stream
may also require the resolution of some synchronization problems. The size of the block
of data processed also affects a number of other things. If the size of the block is too
large, then the adaptation process may not capture the changes taking place in the input
statistics. Furthermore, large block sizes mean more delay, which may not be tolerable in
certain applications. On the other hand, small block sizes mean that the side information
has to be transmitted more often, which in turn means the amount of overhead per sample
increases. The selection of the block size is a trade-off between the increase in side infor-
mation necessitated by small block sizes and the loss of fidelity due to large block sizes
(sece Problem 7).
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The variance estimation procedure is rather simple. At time n we use a block of N future
samples to compute an estimate of the variance

1 N-1 ,
&3 =% Y ox,. (9.20)
i=0
Note that we are assuming that our input has a mean of zero. The variance information also
needs to be quantized so that it can be transmitted to the receiver. Usually, the number of
bits used to quantize the value of the variance is significantly larger than the number of bits
used to quantize the sample values.

Example 9.5.1:

In Figure 9.13 we show a segment of speech quantized using a fixed 3-bit quantizer. The
step size of the quantizer was adjusted based on the statistics of the entire sequence. The
sequence was the testm.raw sequence from the sample data sets, consisting of about
4000 samples of a male speaker saying the word “test.” The speech signal was sampled at
8000 samples per second and digitized using a 16-bit A/D.

15 ] 1 | 1 { ] ]

Original —
Reconstructed - - -

2.0 —
1.5 —
1.0 —
0.5

-0.5 ; N
-1.0 ' S

-1.5 -

i lk
gy |

-2.0

T

]

T

180 200 220 240 260 280 300 320

FIGURE 9. 13 Original 16-bit speech and compressed 3-bit speech sequences.

We can see from the figure that, as in the case of the example of the sinusoid earlier
in this chapter, there is a considerable loss in amplitude resolution. Sample values that are
close together have been quantized to the same value.

The same sequence quantized with a forward adaptive quantizer is shown in Figure 9.14.
For this example, we divided the input into blocks of 128 samples. Before quantizing the
samples in a block, the standard deviation for the samples in the block was obtained. This
value was quantized using an 8-bit quantizer and sent to both the transmitter and receiver.
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FIGURE 9. 14 Original 16-bit speech sequence and sequence obtained using an
eight-level forward adaptive quantizer.

The samples in the block were then normalized using this value of the standard deviation.
Notice that the reconstruction follows the input much more closely, though there seems to
be room for improvement, especially in the latter half of the displayed samples. ¢

Example 9.5.2:

In Example 9.4.1, we used a uniform quantizer with the assumption that the input is uniformly
distributed. Let us refine this source model a bit and say that while the source is uniformly
distributed over different regions, the range of the input changes. In a forward adaptive
quantization scheme, we would obtain the minimum and maximum values for each block of
data, which would be transmitted as side information. In Figure 9.15, we see the Sena image
quantized with a block size of 8 x 8 using 3-bit forward adaptive uniform quantization. The
side information consists of the minimum and maximum values in each block, which require
8 bits each. Therefore, the overhead in this case is S'x—(’x or (.25 bits per pixel, which is quite
small compared to the number of bits per sample used by the quantizer.

The resulting image is hardly distinguishable from the original. Certainly at higher rates,

forward adaptive quantization seems to be a very good alternative. ¢

9.5.2 Backward Adaptive Quantization

In backward adaptive quantization, only the past quantized samples are available for use in
adapting the quantizer. The values of the input are only known to the encoder; therefore,
this information cannot be used to adapt the quantizer. How can we get information about
mismatch simply by examining the output of the quantizer without knowing what the. input
was? If we studied the output of the quantizer for a long period of time, we could get some
idea about mismatch from the distribution of output values. If the quantizer step size A is
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FIGURE 9. 15 Sena image quantized to 3.25 bits per pixel using forward
adaptive quantization.

well matched to the input, the probability that an input to the quantizer would land in a
particular interval would be consistent with the pdf assumed for the input. However, if the
actual pdf differs from the assumed pdf, the number of times the input falls in the different
quantization intervals will be inconsistent with the assumed pdf. If A is smaller than what
it should be, the input will fall in the outer levels of the quantizer an excessive number of
times. On the other hand. if A is'larger than it should be for a particular source, the input
will fall in the inner levels an excessive number of times. Therefore, it seems that we should
observe the output of the quantizer for a long period of time, then expand the quantizer step
size if the input falls in the outer levels an excessive number of times, and contract the step
size if the input falls in the inner levels an excessive number of times.

Nuggehally S. Jayant at Bell Labs showed that we did not need to observe the quantizer
output over a long period of time [110]. In fact, we could adjust the quantizer step size
after observing a single output. Jayant named this quantization approach “quantization with
one word memory.” The quantizer is better known as the Javant quantizer. The idea behind
the Jayant quantizer is very simple. If the input falls in the outer levels, the step size needs
to be expanded. and if the input falls in the inner quantizer levels, the step size needs to
be reduced. The expansions and contractions should be done in such a way that once the
quantizer is matched to the input, the product of the expansions and contractions is unity.

The expansion and contraction of the step size is accomplished in the Jayant quantizer
by assigning a multiplier M, to each interval. If the (n — I)th input falls in the kth interval,
the step size to be used for the nth input is obtained by multiplying the step size used for the
(n— 1)th input with M,. The multiplier values for the inner levels in the quantizer are less
than one, and the multiplier values for the outer levels of the quantizer are greater than one.
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Therefore, if an input falls into the inner levels, the quantizer used to quantize the next input
will have a smaller step size. Similarly, if an input falls into the outer levels, the step size
will be multiplied with a value greater than one, and the next input will be quantized using
a larger step size. Notice that the step size for the current input is modified based on the
previous quantizer output. The previous quantizer output is available to both the transmitter
and receiver, so there is no need to send any additional information to inform the receiver
about the adaptation. Mathematically, the adaptation process can be represented as

A, =My, A, (9.21)

where [(n — 1) is the quantization interval at time n— 1.

In Figure 9.16 we show a 3-bit uniform quantizer. We have eight intervals represented by
the different quantizer outputs. However, the multipliers for symmetric intervals are identical
because of symmetry:

My=M, M,=M, My=M, M,=M,

Therefore, we only need four multipliers. To see how the adaptation proceeds, let us work
through a simple example using this quantizer.

4 Output 3
TA/2
2
5A/2
I
3A/2
0
A2
-3A -2A -A A 2A 3A
] 1 ] ] | i -
4 AR Input
5
- —3A/2
6
— —5A/2
7
= —7A2

FIGURE 9. 16 Output levels for the Jayant quantizer.
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Example 9.5.3: Jayant quantizer

For the quantizer in Figure 9.16, suppose the multiplier values are My =M, =0.8, M, =
Ms=0.9,M,=M,=1, M, =M, =1.2; the initial value of the step size, Ay, is 0.5; and the
sequence to be quantized is 0.1, -0.2,0.2,0.1, -0.3,0.1,0.2,0.5,0.9, 1.5, . . .. When the
first input is received, the quantizer step size is 0.5. Therefore, the input falls into level 0,
and the output value is 0.25, resulting in an error of 0.15. As this input fell into the quantizer
level 0, the new step size A, is M, x A; = 0.8 x 0.5 = 0.4. The next input is —0.2, which
falls into level 4, As the step size at this time is 0.4, the output is —0.2. To update, we
multiply the current step size with M,. Continuing in this fashion, we get the sequence of
step sizes and outputs shown in Table 9.5.

TABLE 9.5 Operation of a Jayant quantizer.

n A, Input Output Level Output Error Update Equation
0 0.5 0.1 0 0.25 0.15 A =M, x4
1 0.4 -0.2 4 -0.2 0.0 A, =M, x A
2 0.32 0.2 0 0.16 0.04 Ay =M, x A,
3 0.256 0.1 0 0.128 0.028 A, =My x A,
4 0.2048 —0.3 5 —0.3072 —0.0072 Ay =Msx A,
5 0.1843 0.1 0 0.0922 —0.0078 Ag = My x As
6 0.1475 0.2 1 0.2212 0.0212 A, =M, x A
7 0.1328 0.5 3 0.4646 —0.0354 Ag=M;x A,
8 0.1594 0.9 3 0.5578 —0.3422 Ay = My x Ay
9 0.1913 1.5 3 0.6696 —-0.8304 Ay =M, x Ay

10 0.2296 1.0 3 0.8036 0.1964 Ay =My x Ay

11 0.2755 0.9 3 0.9643 0.0643 A, =M xA,

Notice how the quantizer adapts to the input. In the beginning of the sequence, the
input values are mostly small, and the quantizer step size becomes progressively smaller,
providing better and better estimates of the input. At the end of the sample sequence. the
input values are large and the step size becomes progressively bigger. However, the size
of the error is quite large during the transition. This means that if the input was changing
rapidly, which would happen if we had a high-frequency input, such transition situations
would be much more likely to occur, and the quantizer would not function very well.
However, in cases where the statistics of the input change slowly, the quantizer could adapt
to the input. As most natural sources such as speech and images tend to be correlated, their
values do not change drastically from sample to sample. Even when some of this structure
is removed through some transtormation, the residual structure is generally enough for the
Jayant quantizer (or some variation of it) to function quite effectively. ¢

The step size in the initial part of the sequence in this example is progressively getting
smaller. We can easily conceive of situations where the input values would be small for a
long period. Such a situation could occur during a silence period in speech-encoding systems.
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or while encoding a dark background in image-encoding systems. If the step size continues
to shrink for an extended period of time, in a finite precision system it would result in a
value of zero. This would be catastrophic, effectively replacing the quantizer with a zero
output device. Usually, a minimum value A_;, is defined, and the step size is not allowed to
go below this value to prevent this from happening. Similarly, if we get a sequence of large
values, the step size could increase to a point that, when we started getting smaller values,
the quantizer would not be able to adapt fast enough. To prevent this from happening, a
maximum value A_, is defined, and the step size is not allowed to increase beyond this
value.

The adaptivity of the Jayant quantizer depends on the values of the multipliers. The
further the multiplier values are from unity, the more adaptive the quantizer. However, if the
adaptation algorithm reacts too fast, this could lead to instability. So how do we go about
selecting the multipliers?

First of all, we know that the multipliers correponding to the inner levels are less than one,
and the multipliers for the outer levels are greater than one. If the input process is stationary
and P, represents the probability of being in quantizer interval k (generally estimated by
using a fixed quantizer for the input data), then we can impose a stability criterion for the
Jayant quantizer based on our requirement that once the quantizer is matched to the input,
the product of the expansions and contractions are equal to unity. That is, if n, is the number
of times the input falls in the kth interval,

M
M =1. 9.22)
k=0

Taking the Nth root of both sides (where N is the total number of inputs) we obtain

g
N

MY =1,

S

k=0

or
M
M =1 9.23)
k=0

where we have assumed that P, = n,/N.

There are an infinite number of multiplier values that would satisfy Equation (9.23). One
way to restrict this number is to impose some structure on the multipliers by requiring them
to be of the form

M, = ' (9.24)

where vy is a number greater than one and /, takes on only integer values [111, 112]. If we
substitute this expression for M, into Equation (9.23), we get

M
[Ty =1, (9.25)
k=0
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which implies that
M
> LP,=0. (9.26)
k=0

The final step is the selection of vy, which involves a significant amount of creativity. The
value we pick for «y determines how fast the quantizer will respond to changing statistics.
A large value of vy will result in faster adaptation, while a smaller value of y will result in
greater stability.

Example 9.5.4:

Suppose we have to obtain the multiplier functions for a 2-bit quantizer with input proba-
bilities P, = 0.8, P, = 0.2. First, note that the multiplier value for the inner level has to be
less than 1. Therefore, /; is less than 0. If we pick /, = —1 and [, = 4, this would satisfy
Equation (9.26), while making M, less than 1 and M, greater than 1. Finally, we need to
pick a value for v.

In Figure 9.17 we see the effect of using different values of vy in a rather extreme
example. The input is a square wave that switches between 0 and 1 every 30 samples. The
input is quantized using a 2-bit Jayant quantizer. We have used /, = —1 and [/, = 2. Notice
what happens when the input switches from O to 1. At first the input falls in the outer level
of the quantizer, and the step size increases. This process continues until A is just greater
than L. If vy is close to 1, A has been increasing quite slowly and should have a value close
to 1 right before its value increases to greater than 1. Therefore, the output at this point is
close to 1.5. When A becomes greater than 1, the input falls in the inner level, and if vy is
close to 1, the output suddenly drops to about 0.5. The step size now decreases until it is just

0.8 - | -
Amplitude 0.6 IR NRERE =
0.4 - | o

0.2 : L

0 — —T T o
0 10 20 30 40 50 60 70 80 90
Time

FIGURE 9. 17 Effect of v on the performance of the Jayant quantizer.
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below 1, and the process repeats, causing the “ringing” seen in Figure 9.17. As vy increases,
the quantizer adapts more rapidly, and the magnitude of the ringing effect decreases. The
reason for the decrease is that right before the value of A increases above 1, its value is
much smaller than 1. and subsequently the output value is much smaller than 1.5. When A
increases beyond 1. it may increase by a significant amount, so the inner level may be much
greater than 0.5. These two effects together compress the ringing phenomenon. Looking at
this phenomenon. we can see that it may have been better to have two adaptive strategies,
one for when the input is changing rapidly. as in the case of the transitions between 0 and 1,
and one for when the input is constant, or nearly so. We will explore this approach further
when we describe the quantizer used in the CCITT standard G.726. ¢

When selecting multipliers for a Jayant quantizer, the best quantizers expand more rapidly
than they contract. This makes sense when we consider that, when the input falls into the
outer levels of the quantizer, it is incurring overload error, which is essentially unbounded.
This situation needs to be mitigated with dispatch. On the other hand, when the input falls in
the inner levels. the noise incurred is granular noise. which is bounded and therefore may be
more tolerable. Finally, the discussion of the Jayant quantizer was motivated by the need for
robustness in the face of changing input statistics. Let us repeat the earlier experiment with
changing input variance and distributions and see the performance of the Jayant quantizer
compared to the pdf-optimized quantizer. The results for these experiments are presented in
Figure 9.18.

Notice how flat the performance curve is. While the performance of the Jayant quantizer
is much better than the nonadaptive uniform quantizer over a wide range of input variances,
at the point where the input variance and design variance agree, the performance of the
nonadaptive quantizer is significantly better than the performance of the Jayant quantizer.

o — L L1

~—
15 L
SNR (dB) 10 — -
5 -

0 T T 1 T T T T
0O 2 3 4 5 6 71 &8 9 10

Ratio of input variance to design variance

FIGURE 9. 18 Performance of the Jayant quantizer for different input variances.
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This means that if we know the input statistics and we are reasonably certain that the input
statistics will not change over time, it is better to design for those statistics than to design
an adaptive system.

9.6 Nonuniform Quantization

As we can see from Figure 9.10, if the input distribution has more mass near the origin,
the input is more likely to fall in the inner levels of the quantizer. Recall that in lossless
compression, in order to minimize the average number of bits per input symbol, we assigned
shorter codewords to symbols that occurred with higher probability and longer codewords
to symbols that occurred with lower probability. In an analogous fashion, in order to
decrease the average distortion, we can try to approximate the input better in regions of high
probability, perhaps at the cost of worse approximations in regions of lower probability. We
can do this by making the quantization intervals smaller in those regions that have more
probability mass. If the source distribution is like the distribution shown in Figure 9.10, we
would have smaller intervals near the origin. If we wanted to keep the number of intervals
constant, this would mean we would have larger intervals away from the origin. A quantizer
that has nonuniform intervals is called a nonuniform quantizer. An example of a nonuniform
quantizer is shown in Figure 9.19.

Notice that the intervals closer to zero are smaller. Hence the maximum value that the
quantizer error can take on is also smaller, resulting in a better approximation. We pay for
this improvement in accuracy at lower input levels by incurring larger errors when the input
falls in the outer intervals. However, as the probability of getting smaller input values is
much higher than getting larger signal values, on the average the distortion will be lower
than if we had a uniform quantizer. While a nonuniform quantizer provides lower average
distortion, the design of nonuniform quantizers is also somewhat more complex. However,
the basic idea is quite straightforward: find the decision boundaries and reconstruction levels
that minimize the mean squared quantization error. We look at the design of nonuniform
quantizers in more detail in the following sections.

9.6.1 pdf-Optimized Quantization

A direct approach for locating the best nonuniform quantizer. if we have a probability model
for the source, is to find the {b,;} and {y,} that minimize Equation (9.3). Setting the derivative
of Equation (9.3) with respect to v, to zero, and solving for y,. we get

f)b’ xXfy(x)dx
y= el 9.27)
‘/1,,) , f \'(J\‘)(IX

The output point for each quantization interval is the centroid of the probability mass in
that interval. Taking the derivative with respect to b, and setting it equal to zero, we get an
expression for b; as

, Nty
i ) -

9.28)
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FIGURE 9. 19 A nonuniform midrise quantizer.

The decision boundary is simply the midpoint of the two neighboring reconstruction
levels. Solving these two equations will give us the values for the reconstruction levels and
decision boundaries that minimize the mean squared quantization error. Unfortunately, to
solve for ¥j» we need the values of bj and b)v_l, and to solve for bj, we need the values
of y;., and y;. In a 1960 paper, Joel Max [108] showed how to solve the two equations
iteratively. The same approach was described by Stuart P. Lloyd in a 1957 internal Bell
Labs memorandum. Generally, credit goes to whomever publishes first, but in this case,
because much of the early work in quantization was done at Bell Labs, Lloyd's work was
given due credit and the algorithm became known as the Lloyd-Max algorithm. However,
the story does not end (begin?) there. Allen Gersho [113] points out that the same algorithm
was published by Lukaszewicz and Steinhaus in a Polish journal in 1955 [114]! Lloyd’s
paper remained unpublished until 1982, when it was finally published in a special issue of
the I[EEE Transactions on Information Theory devoted to quantization [115].
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To see how this algorithm works, let us apply it to a specific situation. Suppose
we want to design an M-level symmetric midrise quantizer. To define our symbols, we
will use Figure 9.20. From the figure, we see that in order to design this quantizer,

we need to obtain the reconstruction levels {y;, y,, ... ,y%} and the decision boundaries
{bi, by, ..., by _,}. The reconstruction levels {y_,,y 5, ... ,y-u} and the decision bound-
aries {b_,,b_,,...,b__,)} can be obtained through symmetry, the decision boundary b,

is zero, and the decision boundary by is simply the largest value the input can take on
(for unbounded inputs this would be oo).
Let us set j equal to 1 in Equation (9.27):

:" xfy(x)dx

Y = by .
by fx(x)dx

(9.29)

Output |-y,

b, b, by Input

~ Y 1

FIGURE 9. 20 A nonuniform midrise quantizer.
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As b, is known to be 0, we have two unknowns in this equation, », and y,. We make a
guess at v, and later we will try to refine this guess. Using this guess in Equation (9.29),
we numerically find the value of b, that satisfies Equation (9.29). Setting j equal to 1 in
Equation (9.28). and rearranging things slightly, we get

Y2 =2b,+y, (9.30)

from which we can compute v,. This value of v, can then be used in Equation (9.27) with
J =2 to find b,, which in turn can be used to find y;. We continue this process, until we
obtain a value for {v,, vs..... vu} and {b,.b,..... by _,}. Note that the accuracy of all
the values obtained to this point depends on the quality of our initial estimate of y,. We
can check this by noting that yy is the centroid of the probability mass of the interval
[bs_,, bu]. We know by from our knowledge of the data. Therefore, we can compute the
integral )
bar
Jrg i)

Va

3

= (2.31)
Jog  Se)dx

and compare it with the previously computed value of vy . If the difference is less than some
tolerance threshold, we can stop. Otherwise, we adjust the estimate of v, in the direction
indicated by the sign of the difference and repeat the procedure.

Decision boundaries and reconstruction levels for various distributions and number of
levels generated using this procedure are shown in Table 9.6. Notice that the distributions
that have heavier tails also have larger outer step sizes. However, these same quantizers have
smaller inner step sizes because they are more heavily peaked. The SNR for these quantizers
is also listed in the table. Comparing these values with those for the pdf-optimized uniform
quantizers, we can see a significant improvement, especially for distributions further away
from the uniform distribution. Both uniform and nonuniform pdf-optimized, or Lloyd-Max,

TABLE 9.6 Quantizer boundary and reconstruction levels for nonuniform
Gavssian and Laplacian quantizers.

Gaussian Laplacian
Levels b, v SNR b v SNR

4 0.0 0.4528 0.0 0.4196

0.9816 1.510 9.3dB 1.1269 1.8340 7.54dB
6 0.0 0.3177 0.0 0.2998

0.6589 1.0 0.7195 1.1393

1.447 1.894 12.41dB 1.8464 2.5535 10.51dB
8 0.0 0.2451 0.0 0.2334

0.7560 0.6812 0.5332 0.8330

1.050 1.3440 1.2527 1.6725

1.748 2.1520 14.62dB 2.3796 3.0867 12.64dB
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quantizers have a number of interesting properties. We list these properties here (their proofs
can be found in [116, 117, 118]):

B Property 1: The mean values of the input and output of a Lloyd-Max quantizer are equal.

B Property 2: For a given Lloyd-Max quantizer. the variance of the output is always
less than or equal to the variance of the input.

B Property 3: The mean squared quantization error for a Lloyd-Max quantizer is
given by

M
g, =0 =Y ¥ Plb_ <X <b)] (9.32)
=1

where o7 is the variance of the quantizer input, and the second term on the right-hand
side is the second moment of the output (or variance if the input is zero mean).

B Property 4: Let N be the random variable corresponding to the quantization error.
Then for a given Lloyd-Max quantizer,

E[XN] = 0. (9.33)

B Property 5: For a given Lloyd-Max quantizer, the quantizer output and the quantiza-
tion noise are orthogonal:

E[Q(X)N | by. b,.....b,]=0. (9.34)

As in the case of uniform quantizers, the pdf-optimized nonuniform quantizers also have
problems when the assumptions underlying their design are violated. In Figure 9.21 we show
the effects of variance mismatch on a 4-bit Laplacian nonuniform quantizer.

This mismatch effect is a serious problem because in most communication systems the
input variance can change considerably over time. A common example of this is the telephone
system. Different people speak with differing amounts of loudness into the telephone. The
quantizer used in the telephone system needs to be quite robust to the wide range of input
variances in order to provide satisfactory service.

One solution to this problem is the use of adaptive quantization to match the quantizer
to the changing input characteristics. We have already looked at adaptive quantization for
the uniform quantizer. Generalizing the uniform adaptive quantizer to the nonuniform case
1s relatively straightforward, and we leave that as a practice exercise (see Problem 8).
A somewhat different approach is to use a nonlinear mapping to flatten the performance
curve shown in Figure 9.21. In order to study this approach, we need to view the nonuniform
quantizer in a slightly different manner.

9.6.2 Companded Quantization

Instead of making the step size small, we could make the interval in which the input lies
with high probability large—that is, expand the region in which the input lands with high
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FIGURE 9. 21 Effect of mismatch on nonuniform quantization.

probability in proportion to the probability with which the input lands in this region. This
is the idea behind companded quantization. This quantization approach can be represented
by the block diagram shown in Figure 9.22. The input is first mapped through a compressor
function. This function “stretches” the high-probability regions close to the origin, and cor-
respondingly “compresses” the low-probability regions away from the origin. Thus, regions
close to the origin in the input to the compressor occupy a greater fraction of the total
region covered by the compressor. If the output of the compressor function is quantized
using a uniform quantizer, and the quantized value transformed via an expander function,

§ Output ) Output AOutput

Input J_l—'_r Input Input

Compressor Uniform quantizer Expander

FIGURE 9. 22 Block diagram for log companded quantization.
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the overall effect is the same as using a nonuniform quantizer. To see this. we devise a
simple compander and see how the process functions.

Example 9.6.1:

Suppose we have a source that can be modeled as a random variable taking values in the
interval [—4, 4] with more probability mass near the origin than away from it. We want to
quantize this using the quantizer of Figure 9.3. Let us try to flatten out this distribution using
the following compander. and then compare the companded quantization with straightforward
uniform quantization. The compressor characteristic we will use is given by the following
equation:

2x if—1<xy<l|
c)=13F+1 1> | {9.35)
-1 x<—L

The mapping is shown graphically in Figure 9.23. The inverse mapping is given by

L if—2<xy<2
cl)=32-2 v>2 (9.36)
L2 ox< -2
The inverse mapping is shown graphically in Figure 9.24.
3
clx)
3
2
l /
e P2 3 4
-l | | | 1 | L
RY
1
-2
// -
~ — —4

FIGURE 9. 23 Compressor mapping.
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FIGURE 9. 24 Expander mapping.

Let's see how using ‘these mappings affects the quantization error both near and far
from the origin. Suppose we had an input of 0.9. If we quantize directly with the uniform
quantizer, we get an output of 0.5, resulting in a quantization error of 0.4. If we use the
companded quantizer. we first use the compressor mapping. mapping the input value of 0.9
to 1.8. Quantizing this with the same uniform quantizer results in an output of 1.5, with
an apparent error of 0.3. The expander then maps this to the final reconstruction value of
0.75. which is 0.15 away from the input. Comparing 0.15 with 0.4. we can see that relative
to the input we get a substantial reduction in the quantization error. In fact, for all values
in the interval [—1, 1]. we will not get any increase in the quantization error, and for most
values we will get a decrease in the quantization error (see Problem 6 at the end of this
chapter). Of course, this will not be true for the values outside the [—1. 1] interval. Suppose
we have an input of 2.7. If we quantized this directly with the uniform quantizer, we would
get an output of 2.5, with a corresponding error of 0.2. Applying the compressor mapping,
the value of 2.7 would be mapped to 3.13. resulting in a quantized value of 3.5. Mapping
this back through the expander. we get a reconstructed value of 3.25. which differs from the
input by 0.55.

As we can see. the companded quantizer effectively works like a nonuniform quantizer
with smaller quantization intervals in the interval [—1. 1] and larger quantization intervals
outside this interval. What is the effective input-output map of this quantizer? Notice that
all inputs in the interval [0, 0.5] get mapped into the interval [0, 1]. for which the quantizer
output is 0.5, which in turn corresponds to the reconstruction value of 0.25. Essentially.
all values in the interval [0, 0.5] are represented by the value 0.25. Similarly. all values in
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FIGURE 9. 25 Nonuniform companded quantizer.

the interval [0.5, 1] are represented by the value 0.75, and so on. The effective quantizer
input-output map is shown in Figure 9.25. ¢

If we bound the source output by some value x,,,., any nonuniform quantizer can always
be represented as a companding quantizer. Let us see how we can use this fact to come up
with quantizers that are robust to mismatch. First we need to look at some of the properties
of high-rate quantizers, or quantizers with a large number of levels.

Define

A, =b b, ;. (9.37)

If the number of levels is high, then the size of each quantization interval will be small, and
we can assume that the pdf of the input f,(x) is essentially constant in each quantization
interval. Then

folx)y = f() ith, | <x<b,. (9.38)

Using this we can rewrite Equation (9.3) as

M h,
zrfl = Z.f:\'(-v:)/ (x—v,) dx 9.39)
=1 by
| M
= 55 2 (A (9.40)
= =1
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FIGURE 9. 26 A compressor function.

Armed with this result, let us return to companded quantization. Let ¢(x) be a companding
characteristic for a symmetric quantizer. and let ¢'(x) be the derivative of the compressor
characteristic with respect to x. If the rate of the quantizer is high. that is. if there are a
large number of levels. then within the kth interval. the compressor characteristic can be
approximated by a straight line segment (see Figure 9.26), and we can write

¢v) = 5(1"»)—;“'“’* ) (9.41)
A

From Figure 9.26 we can also see that ¢(h,) — c(b, ) is the step size of a unitorm M-level
quantizer. Therefore,

3 ..
by —clh )= "2 (9.42)

Substituting this into Equation (9.41) and solving for . we get

3.

=\
A, = m 9.43
M) 7.43)
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Finally. substituting this expression for A, into Equation (9.40), we get the following
relationship between the quantizer distortion, the pdf of the input, and the compressor
characteristic:

ES Y

- Zm )(M fg“*))}

— ximx i f’((‘;) ) 2xmax
M2 & () ME ()

i=]

. Tmax fX(\/)
= 3M’Z ST (9.44)

which for small A; can be written as

3_ xmu s f’((r)
= A @) dx. (9.45)

This is a famous result, known as the Bennett integral after its discoverer, W.R. Bennett
[119], and it has been widely used to analyze quantizers. We can see from this integral that
the quantizer distortion is dependent on the pdf of the source sequence. However, it also
tells us how to get rid of this dependence. Define

(x) = Zman (9.46)

RXI
where a is a constant. From the Bennett integral we get

x~ o 2 max

03 = 3;/;‘3)(3_ i X% fy (x)dx (9.47)
- %g (9.48)

where
oi=[ ™ 2 (x)dx. (9.49)

~Tmax
Substituting the expression for 03 into the expression for SNR, we get

2

SNR = 10log,, = (9.50)
g,

= 10log,,(3M?) —20log,, o (9.51)

which is independent of the input pdf. This means that if we use a compressor characteristic
whose derivative satisfies Equation (9.46), then regardless of the input variance, the signal-
to-noise ratio will remain constant. This is an impressive result. However, we do need some
caveats.

Notice that we are not saying that the mean squared quantization error is independent
of the quantizer input. It is not, as is clear from Equation (9.48). Remember also that this
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result is valid as long as the underlying assumptions are valid. When the input variance is
very small, our assumption about the pdf being constant over the quantization interval is
no longer valid, and when the variance of the input is very large, our assumption about the
input being bounded by x,,,, may no longer hold.

With fair warning, let us look at the resulting compressor characteristic. We can obtain
the compressor characteristic by integrating Equation (9.46):

() = Xy + Blog 21 9.52)

“max
where B is a constant. The only problem with this compressor characteristic is that it becomes
very large for small x. Therefore, in practice we approximate this characteristic with a
function that is linear around the origin and logarithmic away from it.
Two companding characteristics that are widely used today are u-law companding and
A-law companding. The w-law compressor function is given by

In(14piL)
(X)) = Xy — - $gN(X). 9.53
The expander function is given by
) = ﬁfﬁ[(n + ) — 1sgn(x). (9.54)

This companding characteristic with u = 255 is used in the telephone systems in North
America and Japan. The rest of the world uses the A-law characteristic. which is given by

Al

} B i
[T A\Sgn(‘\) 0= Vi =
(‘(X) = ' I +1in }ﬂ | |;’ [955)
'xrmux |4,[n",‘{H Sgﬂ(.\’) A S ‘__‘ S ]
and .
i, [x |
S(l+1nA) 0< <
_ A Unax t+In A
=l B S (9.56)
ex (1+InA)—1 < <1
A |2 1+InA — Yo —

9.7 Entropy-Coded Quantization

In Section 9.3 we mentioned three tasks: selection of boundary values. selection of recon-
struction levels, and selection of codewords. Up to this point we have talked about accom-
plishment of the first two tasks, with the performance measure being the mean squared
quantization error. In this section we will look at accomplishing the third task, assigning
codewords to the quantization interval. Recall that this becomes an issue when we use
variable-length codes. In this section we will be looking at the latter situation, with the rate
being the performance measure.

We can take two approaches to the variable-length coding of quantizer outputs. We
can redesign the quantizer by taking into account the fact that the selection of the deci-
sion boundaries will affect the rate, or we can keep the design of the quantizer the same
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(i.e., Lloyd-Max quantization) and simply entropy-code the quantizer output. Since the latter
approach is by far the simpler one, let’s look at it first.

9.7.1 Entropy Coding of Lloyd-Max Quantizer
Outputs

The process of trying to find the optimum quantizer for a given number of levels and rate
is a rather difficult task. An easier approach to incorporating entropy coding is to design
a quantizer that minimizes the msqe, that is, a Lloyd-Max quantizer, then entropy-code its
output.

In Table 9.7 we list the output entropies of uniform and nonuniform Lloyd-Max quan-
tizers. Notice that while the difference in rate for lower levels is relatively small, for a
larger number of levels, there can be a substantial difference between the fixed-rate and
entropy-coded cases. For example, for 32 levels a fixed-rate quantizer would require 5 bits
per sample. However, the entropy of a 32-level uniform quantizer for the Laplacian case
is 3.779 bits per sample, which is more than 1 bit less. Notice that the difference between
the fixed rate and the uniform quantizer entropy is generally greater than the difference
between the fixed rate and the entropy of the output of the nonuniform quantizer. This is
because the nonuniform quantizers have smaller step sizes in high-probability regions and
larger step sizes in low-probability regions. This brings the probability of an input falling
into a low-probability region and the probability of an input falling in a high-probability
region closer together. This. in turn, raises the output entropy of the nonuniform quantizer
with respect to the uniform quantizer. Finally, the closer the distribution is to being uniform,
the less difference in the rates. Thus, the difference in rates is much less for the quantizer
for the Gaussian source than the quantizer for the Laplacian source.

9.7.2 Entropy-Constrained Quantization x

Although entropy coding the Lloyd-Max quantizer output is certainly simple, it is easy to
see that we could probably do better if we take a fresh look at the problem of quantizer

TABLE 9.7 Output entropies in bits per sample
for minimum mean squared error

quantizers.
Number of Gaussian Laplacian
Levels Uniform  Nonuniform  Uniform  Nonuniform
4 1.904 1.911 1.751 1.728
6 2.409 2.442 2.127 2.207
8 2.759 2.824 2.394 2.479
16 3.602 3.765 3.063 3473

32 4.449 4.730 3779 4.427
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design, this time with the entropy as a measure of rate rather than the alphabet size. The
entropy of the quantizer output is given by

M
H(Q)=-) P;log, P, (9.57)
i=1

where P, 1s the probability of the input to the quantizer falling in the ith quantization interval -
and is given by
h,
P = Sfy(x)dx. (9.58)
biy
Notice that the selection of the representation values {y;} has no effect on the rate.
This means that we can select the representation values solely to minimize the distortion.
However, the selection of the boundary values affects both the rate and the distortion.
Initially, we found the reconstruction levels and decision boundaries that minimized the
distortion, while keeping the rate fixed by fixing the quantizer alphabet size and assuming
fixed-rate coding. In an analogous fashion. we can now keep the entropy fixed and try to
minimize the distortion. Or, more tormally:

For a given R, find the decision boundaries {b;} that minimize Gj given by
Equation (9.3), subject to H(Q) < R,.

The solution to this problem involves the solution of the following M — | nonlinear
equations [120}]:

P
In f—‘ = Ny = V) Oy 35— 26;) (9.59)

’
{

where A is adjusted to obtain the desired rate, and the reconstruction levels are obtained
using Equation (9.27). A generalization of the method used to obtain the minimum mean
squared error quantizers can be used to obtain solutions for this equation {121]. The process
of finding optimum entropy-constrained quantizers looks complex. Fortunately. at higher
rates we can show that the optimal quantizer is a uniform quantizer, simplitying the problem.
Furthermore, while these results are derived for the high-rate case, it has been shown that
the results also hold for lower rates [121].

9.7.3 High-Rate Optimum Quantization x

At high rates. the design of optimum quantizers becomes simple, at least in theory. Gish
and Pierce’s work [122] says that at high rates the optimum entropy-coded quantizer is a
uniform quantizer. Recall that any nonuniform quantizer can be represented by a compander
and a uniform quantizer. Let us try to find the optimum compressor function at high rates
that minimizes the entropy for a given distortion. Using the calculus of variations approach,
we will construct the functional

J = H(Q)+\o;, (9.60)

then find the compressor characteristic to minimize it.
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For the distortion 0’2, we will use the Bennett integral shown in Equation (9.45). The
quantizer entropy is given by Equation (9.57). For high rates, we can assume (as we
did before) that the pdf fy(x) is constant over each quantization interval A,, and we can
replace Equation (9.58) by

P = fx(y)A;. 9.61)
Substituting this into Equation (9.57), we get
H(Q) = = fx(v)Alog[fy(¥)A] (9.62)
= - fo()'i) log[fx(v)]A, — fo(yi) log[A,]4; (9-63)
2 M

= ~ X fx00) ol ()14, = X frslog 22Ea, (9,64

where we have used Equation (9.43) for A,. For small A; we can write this as

2..
H(Q) = — [ fu(0log fy(x)dx— [ fy(x)log 2= gy 19.65)
c'(x)
2

- _ / Fe(x)log fy (x)dx — log “;;“ + f fe(logd (X)dx  (9.66)

where the first term is the differential entropy of the source h(X). Let’s define g = ¢'(x).
Then substituting the value of H(Q) into Equation (9.60) and differentiating with respect to
g, we get

/f,((x)[g" —2)x3£%4%g‘3]dx —0. (9.67)

This equation is satisfied if the integrand is zero, which gives us

g=./ 2N Xiay = K(constant). (9.68)

3 M
Therefore,
d(x)=K (9.69)
and
c(x) =Kx+a. (9.70)

If we now use the boundary conditions ¢(0) =0 and ¢(x,,,) = X We get c(x) = x,
which is the compressor characteristic for a uniform quantizer. Thus, at high rates the
optimum quantizer is a uniform quantizer.

Substituting this expression for the optimum compressor function in the Bennett integral,
we get an expression for the distortion for the optimum quantizer:

x2
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Substituting the expression for ¢(x) in Equation (9.66), we get the expression for the entropy
of the optimum quantizer:

H(Q) = h(X) —log % (9.72)

Note that while this result provides us with an easy method for designing optimum
quantizers, our derivation is only valid if the source pdf is entirely contained in the interval
[—Xpmaxs Xmax J- @nd if the step size is small enough that we can reasonably assume the pdf
to be constant over a quantization interval. Generally, these conditions can only be satisfied
if we have an extremely large number of quantization intervals. While theoretically this is
not much of a problem, most of these reconstruction levels will be rarely used. In practice,
as mentioned in Chapter 3, entropy coding a source with a large output alphabet is very
problematic. One way we can get around this is through the use of a technique called
recursive indexing.

Recursive indexing is a mapping of a countable set to a collection of sequences of
symbols from another set with finite size [76]. Given a countable set A = {a,. a,....} and
a finite set B = {b,, b,, ..., by} of size M+ 1, we can represent any element in A by a
sequence of elements in B in the following manner:

1. Take the index i of element a; of A.
2. Find the quotient m and remainder r of the index i such that
i=mM+r.

3. Generate the sequence: by by, - by b
— e’
m tmes

re

B is called the representation set. We can see that given any element in A we will have a
unique sequence from B representing it. Furthermore, no representative sequence is a prefix
of any other sequence. Therefore, recursive indexing can be viewed as a trivial. uniquely
decodable prefix code. The inverse mapping is given by

byby by b, a
———
m times

mM+r-

Since it is one-to-one, if it is used at the output of the quantizer to convert the index sequence
of the quantizer output into the sequence of the recursive indices, the former can be recovered
without error from the latter. Furthermore, when the size M + 1 of the representation set
B is chosen appropriately, in effect we can achieve the reduction in the size of the output
alphabets that are used for entropy coding.

Example 9.7.1:

Suppose we want to represent the set of nonnegative integers A = {0, 1,2. ...} with the rep-
resentation set B= {0, 1,2, 3.4, 5}. Then the value 12 would be represented by the sequence
5.5, 2, and the value 16 would be represented by the sequence 5, 5. 5. 1. Whenever the
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decoder sees the value 5. it simply adds on the next value until the next value is smaller than 5.
For example, the sequence 3, 5, 1, 2, 5, 5, 1, 5, 0 would be decoded as 3, 6, 2, 11, 5. ¢

Recursive indexing is applicable to any representation of a large set by a small set. One
way of applying recursive indexing to the problem of quantization is as follows: For a given
step size A > 0 and a positive integer K. define x, and x, as follows:

K—-1
X = = 3 A

X, = v+ (K=DA

where |x] is the largest integer not exceeding x. We define a recursively indexed quantizer
of size K to be a uniform quantizer with step size A and with x; and x,, being its smallest and
largest output levels. (Q defined this way also has 0 as its output level.) The quantization
rule Q. for a given input value x. is as follows:

1. If x falls in the interval (x,+ 3.x, — 32). then Q(x) is the nearest output level.

. oA .
2. If x is greater than v, — 3. see if x, = x—1x, € (v, + 3.1, —3). If so. Q(x) =

(x,. @(x))). If not. form x, = x— 2, and do the same as for x,. This process continues

until for some . x,, = v —mx, falls in (v, + 3 Xy, — é) which will be quantized into
Q) = (V) Vjpe v w2 0, Q). (9.73)
- 7

moimes

3. If v is smaller than x, + 3. a similar procedure to the above is used: that is, form x,, =

m

x4 my; so that it falls in (x,+ 3.x, — 3). and quantize it to (X, Xp.. .. .. v, 0(x,).

In summary, the quantizer operates in two modes: one when the input falls in the range
(x;, x;,), the other when it falls outside of the specified range. The recursive nature in the
second mode gives it the name.

We pay for the advantage of encoding a larger set by a smaller set in several ways. If we
get a large input to our quantizer, the representation sequence may end up being intolerably
large. We also get an increase in the rate. If H(Q) is the entropy of the quantizer output,
and vy is the average number of representation symbols per input symbol. then the minimum
rate for the recursively indexed quantizer is YH(Q).

In practice. neither cost is too large. We can avoid the problem of intolerably large
sequences by adopting some simple strategies for representing these sequences. and the
value of vy is quite close to one for reasonable values of M. For Laplacian and Gaussian
quantizers, a typical value for M would be 15 [76].

9.8 Summary

The area of quantization is a well-researched area and much is known about the subject. In
this chapter. we looked at the design and performance of uniform and nonuniform quantizers
for a variety of sources, and how the performance is affected when the assumptions used
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in the design process are not correct. When the source statistics are not well known or
change with time, we can use an adaptive strategy. One of the more popular approaches to
adaptive quantization is the Jayant quantizer. We also looked at the issues involved with
entropy-coded quantization.

With an area as broad as quantization, we had to keep some of the coverage rather cursory.
However, there is a wealth of information on quantization available in the published literature.
The following sources are especially useful for a general understanding of the area:

1. A very thorough coverage of quantization can be found in Digital Coding of Wave-
forms, by N.S. Jayant and P. Noll [123].

2. The paper “Quantization,” by A. Gersho, in IEEE Communication Magazine, Septem-
ber 1977 [113], provides an excellent tutorial coverage of many of the topics listed
here.

3. The original paper by J. Max, “Quantization for Minimum Distortion,” IRE Transac-
tions on Information Theory [108], contains a very accessible description of the design
of pdf-optimized quantizers.

4. A thorough study of the effects of mismatch is provided by W. Mauersberger in [124].

9.9 Projects and Problems

1. Show that the derivative of the distortion expression in Equation (9.18) results in the
expression in Equation (9.19). You will have to use a result called Leibnitz’s rule
and the idea of a telescoping series. Leibnitz’s rule states that if a(7) and b(r) are
monotonic, then

5 b o gf(r ,) I(t) ()
5 [, f00dx= / . (9.74)

2. Use the program falspos to solve Equation (9.19) numerically for the Gaussian and
Laplacian distributions. You may have to modify the function func in order to do this.

3. Design a 3-bit uniform quantizer (specify the decision boundaries and representa-
tion levels) for a source with a Laplacian pdf, with a mean of 3 and a variance of 4.

4. The pixel values in the Sena image are not really distributed uniformly. Obtain a
histogram of the image (you can use the hist_image routine), and using the fact
that the quantized image should be as good an approximation as possible for the
original, design 1-, 2-, and 3-bit quantizers for this image. Compare these with the
results displayed in Figure 9.7. (For better comparison, you can reproduce the results
in the book using the program uguan_img.)
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Use the program misuquan to study the effect of mismatch between the input and
assumed variances. How do these effects change with the quantizer alphabet size and
the distribution type?

For the companding quantizer of Example 9.6.1, what are the outputs for the
following inputs: —0.8,1.2,0.5,0.6, 3.2, —0.3? Compare your results with the case
when the input is directly quantized with a uniform quantizer with the same number
of levels. Comment on your results.

Use the test images Sena and Bookshelfl to study the trade-offs involved in the
selection of block sizes in the forward adaptive quantization scheme described in
Example 9.5.2. Compare this with a more traditional forward adaptive scheme in
which the variance is estimated and transmitted. The variance information should be
transmitted using a uniform quantizer with differing number of bits.

Generalize the Jayant quantizer to the nonuniform case. Assume that the input is from a
known distribution with unknown variance. Simulate the performance of this quantizer
over the same range of ratio of variances as we have done for the uniform case. Com-
pare your results to the fixed nonuniform quantizer and the adaptive uniform quantizer.
To get a start on your program, you may wish to use misnugq.c and juguan.c.

Let’s look at the rate distortion performance of the various quanitzers.
{a) Plot the rate-distortion function R(D) for a Gaussian source with mean zero and
variance oy = 2.

(b) Assuming fixed length codewords, compute the rate and distortion for 1, 2, and
3 bit pdf-optimized nonuniform quantizers. Also, assume that X is a Gaussian
random variable with mean zero and o} = 2. Plot these values on the same
graph with x's.

¢} For the 2 and 3 bit quantizers, compute the rate and distortion assuming that the
q P g
quantizer outputs are entropy coded. Plot these on the graph with o’s.






Vector Quantization

10.1 Overview

y grouping source outputs together and encoding them as a single block, we can
obtain efficient lossy as well as lossless compression algorithms. Many of the
lossless compression algorithms that we looked at took advantage of this fact.
We can do the same with quantization. In this chapter, several quantization
techniques that operate on blocks of data are described. We can view these
blocks as vectors, hence the name “vector quantization.” We will describe several different
approaches to vector quantization. We will explore how to design vector quantizers and how
these quantizers can be used for compression.

10.2 Introduction

In the last chapter, we looked at different ways of quantizing the output of a source. In all
cases the quantizer inputs were scalar values, and each quantizer codeword represented a
single sample of the source output. In Chapter 2 we saw that, by taking longer and longer
sequences of input samples., it is possible to extract the structure in the source coder output.
In Chapter 4 we saw that, even when the input is random, encoding sequences of samples
instead of encoding individual samples separately provides a more efficient code. Encoding
sequences of samples is more advantageous in the lossy compression framework as well.
By “advantageous™ we mean a lower distortion for a given rate, or a lower rate for a given
distortion. As in the previous chapter, by “rate” we mean the average number of bits per
input sample. and the measures of distortion will generally be the mean squared error and
the signal-to-noise ratio.

The idea that encoding sequences of outputs can provide an advantage over the encoding
of individual samples was first put forward by Shannon, and the basic results in information
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theory were all proved by taking longer and longer sequences of inputs. This indicates that
a quantization strategy that works with sequences or blocks of output would provide some
improvement in performance over scalar quantization. In other words, we wish to generate
a representative set of sequences. Given a source output sequence, we would represent it
with one of the elements of the representative set.

In vector quantization we group the source output into blocks or vectors. For example,
we can treat L consecutive samples of speech as the components of an L-dimensional
vector. Or, we can take a block of L pixels from an image and treat each pixel value as
a component of a vector of size or dimension L. This vector of source outputs forms the
input to the vector quantizer. At both the encoder and decoder of the vector quantizer, we
have a set of L-dimensional vectors called the codebook of the vector quantizer. The vectors
in this codebook, known as code-vectors, are selected to be representative of the vectors
we generate from the source output. Each code-vector is assigned a binary index. At the
encoder, the input vector is compared to each code-vector in order to find the code-vector
closest to the input vector. The elements of this code-vector are the quantized values of the
source output. In order to inform the decoder about which code-vector was found to be the
closest to the input vector, we transmit or store the binary index of the code-vector. Because
the decoder has exactly the same codebook, it can retrieve the code-vector given its binary
index. A pictorial representation of this process is shown in Figure 10.1.

Although the encoder may have to perform a considerable amount of computations in
order to find the closest reproduction vector to the vector of source outputs, the decoding
consists of a table lookup. This makes vector quantization a very attractive encoding scheme
for applications in which the resources available for decoding are considerably less than
the resources available for encoding. For example, in multimedia applications, considerable

Source
output N

¢ Encoder Decoder Recon?ruunon
Group Find

into |m| closest - - Table Unblock
vectors code-vector lookup

Codebook Index Index Codebook

—
—
—
—
—aq

FIGURE 10.1 The vector quantization procedure.
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computational resources may be available for the encoding operation. However. if the
decoding is to be done in software, the amount of computational resources available to the
decoder may be quite limited.

Even though vector quantization is a relatively new area, it has developed very rapidly.
and now even some of the subspecialties are broad areas of research. If this chapter we will
try to introduce you to as much of this fascinating area as we can. If your appetite is whetted
by what is available here and you wish to explore further, there is an excellent book by
Gersho and Gray [5] devoted to the subject of vector quantization.

Our approach in this chapter is as follows: First, we try to answer the question of why we
would want to use vector quantization over scalar quantization. There are several answers
to this question, each illustrated through examples. In our discussion. we assume that you
are familiar with the material in Chapter 9. We will then turn to one of the most important
elements in the design of a vector quantizer, the generation of the codebook. While there are
a number of ways of obtaining the vector quantizer codebook, most of them are based on one
particular approach, popularly known as the Linde-Buzo-Gray (LBG) algorithm. We devote
a considerable amount of time in describing some of the details of this algorithm. Our intent
here is to provide you with enough information so that you can write your own programs for
design of vector quantizer codebooks. In the software accompanying this book, we have also
included programs for designing codebooks that are based on the descriptions in this chapter.
If you are not currently thinking of implementing vector quantization routines, you may wish
to skip these sections (Sections 10.4.1 and 10.4.2). We follow our discussion of the LBG
algorithm with some examples of image compression using codebooks designed with this
algorithm, and then with a brief sampling of the many different kinds of vector quantizers.
Finally. we describe another quantization strategy, called trellis-coded quantization (TCQ).
which. though different in implementation from the vector quantizers, also makes use of the
advantage to be gained from operating on sequences.

Before we begin our discussion of vector quantization, let us define some of the ter-
minology we will be using. The amount of compression will be described in terms of the
rate, which will be measured in bits per sample. Suppose we have a codebook of size K,
and the input vector is of dimension L. In order to inform the decoder of which code-vector
was selected, we need to use [log, K| bits. For example, if the codebook contained 256
code-vectors, we would need 8 bits to specify which of the 256 code-vectors had been
selected at the encoder. Thus, the number of bits per vector is [log, K] bits. As each code-
vector contains the reconstruction values for L source output samples, the number of bits
per sample would be “"—gL’ﬂ Thus, the rate for an L-dimensional vector quantizer with a
codebook of size K is ('“gl‘ X1 As our measure of distortion we will use the mean squared
error. When we say that in a codebook €, containing the K code-vectors {Y,}, the input
vector X is closest to Y,. we will mean that

5

|Xx-v, " <ix-v|* forall¥,e€ (10.1)

where X = (x,x,---x,) and

X =3 (10.2)
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The term sample will always refer to a scalar value. Thus, when we are discussing
compression of images, a sample refers to a single pixel. Finally, the output points of the
quantizer are often referred to as levels. Thus, when we wish to refer to a quantizer with K
output points or code-vectors, we may refer to it as a K-level quantizer.

10.3 Adventages of Vector Quantization over
Scalar Quantization

For a given rate (in bits per sample), use of vector quantization results in a lower distortion
than when scalar quantization is used at the same rate, for several reasons. In this section we
will explore these reasons with examples (for a more theoretical explanation, see [3, 4, 17]).

If the source output is correlated, vectors of source output values will tend to fall in
clusters. By selecting the quantizer output points to lie in these clusters, we have a more
accurate representation of the source output. Consider the following example.

Example 10.3.1:

In Example 8.5.1, we introduced a source that generates the height and weight of individuals.
Suppose the height of these individuals varied uniformly between 40 and 80 inches, and the
weight varied uniformly between 40 and 240 pounds. Suppose we were allowed a total of 6
bits to represent each pair of values. We could use 3 bits to quantize the height and 3 bits to
quantize the weight. Thus, the weight range between 40 and 240 pounds would be divided
into eight intervals of equal width of 25 and with reconstruction values {52,77,...,227}.
Similarly, the height range between 40 and 80 inches can be divided into eight intervals of
width five, with reconstruction levels {42,47, ..., 77}. When we look at the representation
of height and weight separately, this approach seems reasonable. But let’s look at this
quantization scheme in two dimensions. We will plot the height values along the x-axis
and the weight values along the y-axis. Note that we are not changing anything in the
quantization process. The height values are still being quantized to the same eight different
values, as are the weight values. The two-dimensional representation of these two quantizers
is shown in Figure 10.2.

From the figure we can see that we effectively have a quantizer output for a person who
is 80 inches (6 feet 8 inches) tall and weighs 40 pounds, as well as a quantizer output for
an individual whose height is 42 inches but weighs more than 200 pounds. Obviously, these
outputs will never be used, as is the case for many of the other outputs. A more sensible
approach would be to use a quantizer like the one shown in Figure 10.3, where we take
account of the fact that the height and weight are correlated. This quantizer has exactly the
same number of output points as the quantizer in Figure 10.2; however, the output points are
clustered in the area occupied by the input. Using this quantizer, we can no longer quantize
the height and weight separately. We have to consider them as the coordinates of a point
in two dimensions in order to find the closest quantizer output point. However, this method
provides a much finer quantization of the input.
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FIGURE 10. 2 The height/weight scalar quantizers when viewed in
two dimensions.

Note that we have not said how we would obtain the locations of the quantizer outputs
shown in Figure 10.3. These output points make up the codebook of the vector quantizer,
and we will be looking at codebook design in some detail later in this chapter. ¢

We can see from this example that, as in lossless compression, looking at longer
sequences of inputs brings out the structure in the source output. This structure can then be
used to provide more efficient representations.

We can easily see how structure in the form of correlation between source outputs
can make it more efficient to look at sequences of source outputs rather than looking at
each sample separately. However, the vector quantizer is also more efficient than the scalar
quantizer when the source output values are not correlated. The reason for this is actually
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FIGURE 10.3 The height-weight vector quantizer.

quite simple. As we look at longer and longer sequences of source outputs, we are afforded
more flexibility in terms of our design. This flexibility in turn allows us to match the design
of the quantizer to the source characteristics. Consider the following example.

Example 10.3.2:

Suppose we have to design a uniform quantizer with eight output values for a Laplacian
input. Using the information from Table 9.3 in Chapter 9, we would obtain the quantizer
shown in Figure 10.4, where A is equal to 0.7309. As the input has a Laplacian distribution,
the probability of the source output falling in the different quantization intervals is not the
same. For example, the probability that the input will fall in the interval [0, A) is 0.3242,
while the probability that a source output will fall in the interval [3A, oo} is 0.0225. Let’s
look at how this quantizer will quantize two consecutive source outputs. As we did in the
previous example, let’s plot the first sample along the x-axis and the second sample along
the y-axis. We can represent this two-dimensional view of the quantization process as shown
in Figure 10.5. Note that, as in the previous example, we have not changed the quantization
process; we are simply representing it differently. The first quantizer input, which we have
represented in the figure as x,, is quantized to the same eight possible output values as
before. The same is true for the second quantizer input, which we have represented in the
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FIGURE 10. 4 Two representations of an eight-level scalar quantizer.

figure as x,. This two-dimensional representation allows us to examine the quantization
process in a slightly different manner. Each filled-in circle in the figure represents a sequence
of two quantizer outputs. For example, the top rightmost circle represents the two quantizer
outputs that would be obtained if we had two consecutive source outputs with a value
greater than 3A. We computed the probability of a single source output greater than 3A to
be 0.0225. The probability of two consecutive source outputs greater than 2.193 is simply
0.0225 x 0.0225 = 0.0005, which is quite small. Given that we do not use this output point
very often, we could simply place it somewhere else where it would be of more use. Let
us move this output point to the origin, as shown in Figure 10.6. We have now modified
the quantization process. Now if we get two consecutive source outputs with values greater
than 3A, the quantizer output corresponding to the second source output may not be the
same as the first source output.
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FIGURE 10. 5 Input-output map for consecutive quantization of two inputs using
an eight-level scalar quantizer.

If we compare the rate distortion performance of the two vector quantizers, the SNR
for the first vector quantizer is 11.44dB, which agrees with the result in Chapter 9 for
the uniform quantizer with a Laplacian input. The SNR for the modified vector quantizer,
however, is 11.73dB, an increase of about 0.3 dB. Recall that the SNR is a measure of the
average squared value of the source output samples and the mean squared error. As the
average squared value of the source output is the same in both cases, an increase in SNR
means a decrease in the mean squared error. Whether this increase in SNR is significant will
depend on the particular application. What is important here is that by treating the source
output in groups of two we could effect a positive change with only a minor modification.
We could argue that this modification is really not that minor since the uniform characteristic
of the original quantizer has been destroyed. However, if we begin with a nonuniform
quantizer and modify it in a similar way, we get similar results.

Could we do something similar with the scalar quantizer? If we move the output point at
77" to the origin, the SNR drops from 11.44 dB to 10.8 dB. What is it that permits us to make
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FIGURE 10. 6 Modified two-dimensional vector quantizer.

modifications in the vector case, but not in the scalar case? This advantage is caused by the
added flexibility we get by viewing the quantization process in higher dimensions. Consider
the effect of moving the output point from 2 to the origin in terms of two consecutive
inputs. This one change in one dimension cor.responds to moving 15 output points in two
dimensions. Thus, modifications at the scalar quantizer level are gross modifications when
viewed from the point of view of the vector quantizer. Remember that in this example we
have only looked at two-dimensional vector quantizers. As we block the input into larger
and larger blocks or vectors, these higher dimensions provide even greater flexibility and

the promise of further gains to be made. ¢

In Figure 10.6, notice how the quantization regions have changed for the outputs around
the origin, as well as for the two neighbors of the output point that were moved. The
decision boundaries between the reconstruction levels can no longer be described as easily
as in the case for the scalar quantizer. However, if we know the distortion measure. simply
knowing the output points gives us sufficent information to implement the quantization
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process. Instead of defining the quantization rule in terms of the decision boundary, we can
define the quantization rule as follows:

O(X)=7Y, iff d(X,Y)<d(X.Y,)Vi#]. (10.3)

For the case where the input X is equidistant from two output points, we can use a simple
tie-breaking rule such as “use the output point with the smaller index.” The quantization
regions V; can then be defined as

V,=1{X:d(X,Y,) <d(X,Y) ¥i # j}. (10.4)

Thus, the quantizer is completely defined by the output points and a distortion measure.

From a multidimensional point of view, using a scalar quantizer for each input restricts
the output points to a rectangular grid. Observing several source output values at once allows
us to move the output points around. Another way of looking at this is that in one dimension
the quantization intervals are restricted to be intervals, and the only parameter that we can
manipulate is the size of these intervals. When we divide the input into vectors of some
length n, the quantization regions are no longer restricted to be rectangles or squares. We
have the freedom to divide the range of the inputs in an infinite number of ways.

These examples have shown two ways in which the vector quantizer can be used to
improve performance. In the first case, we exploited the sample-to-sample dependence of
the input. In the second case, there was no sample-to-sample dependence; the samples were
independent. However, looking at two samples together still improved performance.

These two examples can be used to motivate two somewhat different approaches toward
vector quantization. One approach is a pattern-matching approach, similar to the process
used in Example 10.3.1, while the other approach deals with the quantization of random
inputs. We will look at both of these approaches in this chapter.

10.4 The Linde-Buzo-Gray Algorithm

In Example 10.3.1 we saw that one way of exploiting the structure in the source output is
to place the quantizer output points where the source output {blocked into vectors) are most
likely to congregate. The set of quantizer output points is called the codebook of the quantizer,
and the process of placing these output points is often referred to as codebook design. When
we group the source output in two-dimensional vectors, as in the case of Example 10.3.1,
we might be able to obtain a good codebook design by plotting a representative set of source
output points and then visually locate where the quantizer output points should be. However,
this approach to codebook design breaks down when we design higher-dimensional vector
quantizers. Consider designing the codebook for a 16-dimensional quantizer. Obviously. a
visual placement approach will not work in this case. We need an automatic procedure for
locating where the source outputs are clustered.

This is a familiar problem in the field of pattern recognition. It is no surprise, there-
fore. that the most popular approach to designing vector quantizers is a clustering pro-
cedure known as the k-means algorithm, which was developed for pattern recognition
applications.
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The k-means algorithm functions as follows: Given a large set of output vectors from
the source, known as the training set, and an initial set of k representative patterns, assign
each element of the training set to the closest representative pattern. After an element is
assigned, the representative pattern is updated by computing the centroid of the training set
vectors assigned to it. When the assignment process is complete, we will have k groups of
vectors clustered around each of the output points.

Stuart Lloyd [115] used this approach to generate the pdf-optimized scalar quantizer,
except that instead of using a training set, he assumed that the distribution was known. The
Lloyd algorithm functions as follows:

M
1. Start with an initial set of reconstruction values [,\',‘-())I . Set k =0, D' = 0. Select
i=1
threshold e.

2. Find decision boundaries

th) (k)
w Yty

b, = e

3. Compute the distortion
M Ir“'

pH — Z/“" (_‘—_y_,,){fx(x)dx.

b

i=|
4. If D% — D%~ < ¢, stop; otherwise, continue.

5. k=k+ 1. Compute new reconstruction values
/,IA h
I xfe(xda
kTP
T .
L Fe(x)dx
»h
Go to Step 2.

Linde, Buzo, and Gray generalized this algorithm to the case where the inputs are no
longer scalars [125]. For the case where the distribution is known, the algorithm looks very
much like the Lloyd algorithm described above.

M
1. Start with an initial set of reconstruction values IY,(O'I .Set k =0, D' = (. Select
i=1
threshold e.

2. Find quantization regions
VY = (X d(X.Y,) < d(X. Y)) Vj#i} j=12,..., M.

i

3. Compute the distortion

M >
D(k) - Zv/;/ttn “X - y"“ “-jx(x)dx
i=1 ’
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If (DWW _ptk=1))

4. s

< €, stop; otherwise. continue.
: . w M
5. k=k+ 1. Find new reconstruction values [ Y, l _

that are the centroids of [V,-(k_”].
1
Go to Step 2.

[=

This algorithm is not very practical because the integrals required to compute the distor-
tions and centroids are over odd-shaped regions in n dimensions, where n is the dimension
of the input vectors. Generally, these integrals are extremely difficult to compute, making
this particular algorithm more of an academic interest.

Of more practical interest is the algorithm for the case where we have a training set
available. In this case, the algorithm looks very much like the k-means algorithm.

M
1. Start with an initial set of reconstruction values ' Ylm’l and a set of training vectors
i=1
{X,}V_,. Set k=0, D" = 0. Select threshold €.

n=1"

M
2. The quantization regions [Vl”‘)l are given by
i=1

V' =X, d(X,. Y) <d(X,,Y)¥j#i} i=1.2.... M

We assume that none of the quantization regions are empty. (Later we will deal with
the case where V,(“ is empty for some / and k.)

3. Compute the average distortion D'*! between the training vectors and the representative
reconstruction value.

If (DH - pth- by

e < €, stop; otherwise, continue.

M
8. k=k+ 1. Find new reconstruction values [Y,m I that are the average value of the

i=1
elements of each of the quantization regions v* ! Goto Step 2.

This algorithm forms the basis of most vector quantizer designs. It is popularly known as
the Linde-Buzo-Gray or LBG algorithm, or the generalized Lloyd algorithm (GLA) [125].
Although the paper of Linde. Buzo, and Gray [125] is a starting point for most of the work
on vector quantization, the latter algorithm had been used several years prior by Edward E.
Hilbert at the NASA Jet Propulsion Laboratories in Pasadena. California. Hilbert’s starting
point was the idea of clustering, and although he arrived at the same algorithm as described
above, he called it the cluster compression algorithm [126].

In order to see how this algorithm functions. consider the following example of a two-
dimensional vector quantizer codebook design.

Example 10.4.1:

Suppose our training set consists of the height and weight values shown in Table 10.1. The
initial set of output points is shown in Table 10.2. (For ease of presentation, we will always
round the coordinates of the output points to the nearest integer.) The inputs. outputs, and
quantization regions are shown in Figure 10.7.
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TABLE 10.1 Training set for designing
vector quantizer codebook.

Height Weight
72 180
65 120
59 119
64 150
65 162
57 88
72 175
44 41
62 114
60 110
56 91
70 172

TABLE 10.2 Initial set of output points
for codebook design.

Height Weight
45 50
75 117
45 117
80 180

The input (44, 41) has been assigned to the first output point; the inputs (56, 91), (57,
88), (59, 119), and (60, 110) have been assigned to the second output point; the inputs
(62, 114), and (65, 120) have been assigned to the third output: and the five remaining
vectors from the training set have been assigned to the fourth output. The distortion for
this assignment is 387.25. We now find the new output points. There is only one vector in
the first quantization region, so the first output point is (44, 41). The average of the four
vectors in the second quantization region (rounded up) is the vector (58. 102), which is the
new second output point. In a similar manner, we can compute the third and fourth output
points as (64, 117) and (69, 168). The new output points and the corresponding quantization
regions are shown in Figure 10.8. From Figure 10.8, we can see that, while the training
vectors that were initially part of the first and fourth quantization regions are still in the same
quantization regions, the training vectors (59.115) and (60,120), which were in quantization
region 2, are now in quantization region 3. The distortion corresponding to this assignment
of training vectors to quantization regions is 89. considerably less than the original 387.25.
Given the new assignments, we can obtain a new set of output points. The first and fourth
output points do not change because the training vectors in the corresponding regions have
not changed. However, the training vectors in regions 2 and 3 have changed. Recomputing
the output points for these regions, we get (57, 90) and (62. 116). The final form of the
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FIGURE 10.7 Initial state of the vector quantizer.
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FIGURE 10. 8 The vector quantizer after one iteration.



